Advances in Optics and Photonics最新文献

筛选
英文 中文
Quantum concepts in optical polarization 光偏振中的量子概念
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-11-08 DOI: 10.1364/aop.404175
A. Z. Goldberg, P. de la Hoz, G. Björk, A. Klimov, M. Grassl, G. Leuchs, L. Sánchez‐Soto
{"title":"Quantum concepts in optical polarization","authors":"A. Z. Goldberg, P. de la Hoz, G. Björk, A. Klimov, M. Grassl, G. Leuchs, L. Sánchez‐Soto","doi":"10.1364/aop.404175","DOIUrl":"https://doi.org/10.1364/aop.404175","url":null,"abstract":"We comprehensively review the quantum theory of the polarization properties of light. In classical optics, these traits are characterized by the Stokes parameters, which can be geometrically interpreted using the Poincare sphere. Remarkably, these Stokes parameters can also be applied to the quantum world, but then important differences emerge: now, because fluctuations in the number of photons are unavoidable, one is forced to work in the three-dimensional Poincare space that can be regarded as a set of nested spheres. Additionally, higher-order moments of the Stokes variables might play a substantial role for quantum states, which is not the case for most classical Gaussian states. This brings about important differences between these two worlds that we review in detail. In particular, the classical degree of polarization produces unsatisfactory results in the quantum domain. We compare alternative quantum degrees and put forth that they order various states differently. Finally, intrinsically nonclassical states are explored and their potential applications in quantum technologies are discussed.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2020-11-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43175120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 35
Principles, fundamentals, and applications of programmable integrated photonics 可编程集成光子学的原理、基本原理和应用
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-09-30 DOI: 10.1364/aop.387155
Daniel Pérez, I. Gasulla, Prometheus Das Mahapatra, J. Capmany
{"title":"Principles, fundamentals, and applications of programmable integrated photonics","authors":"Daniel Pérez, I. Gasulla, Prometheus Das Mahapatra, J. Capmany","doi":"10.1364/aop.387155","DOIUrl":"https://doi.org/10.1364/aop.387155","url":null,"abstract":"Programmable integrated photonics is an emerging new paradigm that aims at designing common integrated optical hardware resource configurations, capable of implementing an unconstrained variety of functionalities by suitable programming, following a parallel but not identical path to that of integrated electronics in the past two decades of the last century. Programmable integrated photonics is raising considerable interest, as it is driven by the surge of a considerable number of new applications in the fields of telecommunications, quantum information processing, sensing, and neurophotonics, calling for flexible, reconfigurable, low-cost, compact, and low-power-consuming devices that can cooperate with integrated electronic devices to overcome the limitation expected by the demise of Moore’s Law. Integrated photonic devices exploiting full programmability are expected to scale from application-specific photonic chips (featuring a relatively low number of functionalities) up to very complex application-agnostic complex subsystems much in the same way as field programmable gate arrays and microprocessors operate in electronics. Two main differences need to be considered. First, as opposed to integrated electronics, programmable integrated photonics will carry analog operations over the signals to be processed. Second, the scale of integration density will be several orders of magnitude smaller due to the physical limitations imposed by the wavelength ratio of electrons and light wave photons. The success of programmable integrated photonics will depend on leveraging the properties of integrated photonic devices and, in particular, on research into suitable interconnection hardware architectures that can offer a very high spatial regularity as well as the possibility of independently setting (with a very low power consumption) the interconnection state of each connecting element. Integrated multiport interferometers and waveguide meshes provide regular and periodic geometries, formed by replicating unit elements and cells, respectively. In the case of waveguide meshes, the cells can take the form of a square, hexagon, or triangle, among other configurations. Each side of the cell is formed by two integrated waveguides connected by means of a Mach–Zehnder interferometer or a tunable directional coupler that can be operated by means of an output control signal as a crossbar switch or as a variable coupler with independent power division ratio and phase shift. In this paper, we provide the basic foundations and principles behind the construction of these complex programmable circuits. We also review some practical aspects that limit the programming and scalability of programmable integrated photonics and provide an overview of some of the most salient applications demonstrated so far.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"12 1","pages":"709-786"},"PeriodicalIF":27.1,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47202069","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 34
Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing 离轴数字全息复用快速波前采集和处理
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-09-30 DOI: 10.1364/aop.384612
N. Shaked, V. Micó, M. Trusiak, A. Kuś, Simcha K. Mirsky
{"title":"Off-axis digital holographic multiplexing for rapid wavefront acquisition and processing","authors":"N. Shaked, V. Micó, M. Trusiak, A. Kuś, Simcha K. Mirsky","doi":"10.1364/aop.384612","DOIUrl":"https://doi.org/10.1364/aop.384612","url":null,"abstract":"Off-axis holographic multiplexing involves capturing several complex wavefronts, each encoded into off-axis holograms with different interference fringe orientations, simultaneously, with a single camera acquisition. Thus, the multiplexed off-axis hologram can capture several wavefronts at once, where each one encodes different information from the sample, using the same number of pixels typically required for acquiring a single conventional off-axis hologram encoding only one sample wavefront. This gives rise to many possible applications, with focus on acquisition of dynamic samples, with hundreds of scientific papers already published in the last decade. These include field-of-view multiplexing, depth-of-field multiplexing, angular perspective multiplexing for tomographic phase microscopy for 3-D refractive index imaging, multiple wavelength multiplexing for multiwavelength phase unwrapping or for spectroscopy, performing super-resolution holographic imaging with synthetic aperture with simultaneous acquisition, holographic imaging of ultrafast events by encoding different temporal events into the parallel channels using laser pulses, measuring the Jones matrix and the birefringence of the sample from a single multiplexed hologram, and measuring several fluorescent microscopy channels and quantitative phase profiles together, among others. Each of the multiplexing techniques opens new perspectives for applying holography to efficiently measure challenging biological and metrological samples. Furthermore, even if the multiplexing is done digitally, off-axis holographic multiplexing is useful for rapid processing of the wavefront, for holographic compression, and for visualization purposes. Although each of these applications typically requires a different optical system or processing, they all share the same theoretical background. We therefore review the theory, various optical systems, applications, and perspectives of the field of off-axis holographic multiplexing, with the goal of stimulating its further development.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2020-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46843030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Geometric descriptions for the polarization of nonparaxial light: a tutorial 非近轴光偏振的几何描述:教程
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-08-06 DOI: 10.1364/AOP.475491
M. Alonso
{"title":"Geometric descriptions for the polarization of nonparaxial light: a tutorial","authors":"M. Alonso","doi":"10.1364/AOP.475491","DOIUrl":"https://doi.org/10.1364/AOP.475491","url":null,"abstract":"This tutorial provides an overview of the local description of polarization for nonparaxial light, for which all Cartesian components of the electric field are significant. The polarization of light at each point is characterized by a $3$ component vector in the case of full polarization or by a $3times3$ polarization matrix for partial polarization. Standard concepts for paraxial polarization like the degree of polarization, the Stokes parameters and the Poincar'e sphere then have generalizations for nonparaxial light that are either not unique or not trivial. This work aims to clarify some of these discrepancies, present some new concepts, and provide a framework that highlights the similarities and differences with the description for the paraxial regimes. Particular emphasis is placed on geometric interpretations.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"1 1","pages":""},"PeriodicalIF":27.1,"publicationDate":"2020-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42552921","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 7
Fiber-based phase-sensitive optical amplifiers and their applications 光纤相敏光放大器及其应用
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-06-30 DOI: 10.1364/aop.382548
P. Andrekson, M. Karlsson
{"title":"Fiber-based phase-sensitive optical amplifiers and their applications","authors":"P. Andrekson, M. Karlsson","doi":"10.1364/aop.382548","DOIUrl":"https://doi.org/10.1364/aop.382548","url":null,"abstract":"Optical parametric amplifiers rely on second-order susceptibility (three-wave mixing) or third-order susceptibility (four-wave mixing) in a nonlinear process where the energy of incoming photons is not changed (elastic scattering). In the latter case, two pump photons are converted to a signal and to an idler photon. Under certain conditions, related to the phase evolution of the waves involved, this conversion can be very efficient, resulting in large amplification of an input signal. As the nonlinear process can be very fast, all-optical applications aside from pure amplification are also possible. If the amplifier is implemented in an optical input-phase-sensitive manner, it is possible to amplify a signal wave without excess noise, i.e., with a noise figure of 0 dB. In this paper, we will provide the fundamental concepts and theory of such amplifiers, with a focus on their implementation in highly nonlinear optical fibers relying on four-wave mixing. We will discuss the distinctions between phase-insensitive and phase-sensitive operation and include several experimental results to illustrate their capability. Different applications of parametric amplifiers are also discussed, including their use in optical communication links.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"12 1","pages":"367-428"},"PeriodicalIF":27.1,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48316646","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 32
Optical pulling forces and their applications 光学拉力及其应用
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-06-30 DOI: 10.1364/aop.378390
Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, T. Zhu, Yuzhi Shi, C. Qiu, Weiqiang Ding
{"title":"Optical pulling forces and their applications","authors":"Hang Li, Yongyin Cao, Lei-Ming Zhou, Xiaohao Xu, T. Zhu, Yuzhi Shi, C. Qiu, Weiqiang Ding","doi":"10.1364/aop.378390","DOIUrl":"https://doi.org/10.1364/aop.378390","url":null,"abstract":"Optical manipulations utilizing the mechanical effect of light have been indispensable in various disciplines. Among those various manipulations, optical pulling has emerged recently as an attractive notion and captivated the popular imagination, not only because it constitutes a rich family of counterintuitive phenomena compared with traditional manipulations but also due to the profound physics underneath and potential applications. Beginning with a general introduction to optical forces, related theories, and methods, we review the progresses achieved in optical pulling forces using different mechanisms and configurations. Similar pulling forces in other forms of waves, including acoustic, water, and quantum matter waves, are also integrated. More importantly, we also include the progresses in counterintuitive left-handed optical torque and lateral optical force as the extensions of the pulling force. As a new manipulation degree of freedom, optical pulling force and related effects have potential applications in remote mass transportation, optical rotating, and optical sorting. They may also stimulate the investigations of counterintuitive phenomena in other forms of waves.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"12 1","pages":"288-366"},"PeriodicalIF":27.1,"publicationDate":"2020-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45407862","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 60
Announcing the Advances in Optics and Photonics advisory board: editorial 宣布光学与光子学咨询委员会的进展:社论
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-05-21 DOI: 10.1364/aop.397308
Guifang Li
{"title":"Announcing the Advances in Optics and Photonics advisory board: editorial","authors":"Guifang Li","doi":"10.1364/aop.397308","DOIUrl":"https://doi.org/10.1364/aop.397308","url":null,"abstract":"Editor-in-Chief Guifang Li announces the new editorial advisory board for the Journal.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"26 1","pages":""},"PeriodicalIF":27.1,"publicationDate":"2020-05-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138541959","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Optical tweezers — from calibration to applications: a tutorial 光学镊子-从校准到应用:教程
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-04-10 DOI: 10.1364/aop.394888
J. Gieseler, Juan Ruben Gomez-Solano, A. Magazzù, I. Pérez Castillo, Laura Pérez García, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A. Arzola, K. Volke-Sepúlveda, G. Volpe
{"title":"Optical tweezers — from calibration to applications: a tutorial","authors":"J. Gieseler, Juan Ruben Gomez-Solano, A. Magazzù, I. Pérez Castillo, Laura Pérez García, M. Gironella-Torrent, X. Viader-Godoy, F. Ritort, G. Pesce, A. Arzola, K. Volke-Sepúlveda, G. Volpe","doi":"10.1364/aop.394888","DOIUrl":"https://doi.org/10.1364/aop.394888","url":null,"abstract":"Since their invention in 1986 by Arthur Ashkin and colleagues, optical tweezers have become an essential tool in several fields of physics, spectroscopy, biology, nanotechnology, and thermodynamics. In this Tutorial, we provide a primer on how to calibrate optical tweezers and how to use them for advanced applications. After a brief general introduction on optical tweezers, we focus on describing and comparing the various available calibration techniques. Then, we discuss some cutting-edge applications of optical tweezers in a liquid medium, namely to study single-molecule and single-cell mechanics, microrheology, colloidal interactions, statistical physics, and transport phenomena. Finally, we consider optical tweezers in vacuum, where the absence of a viscous medium offers vastly different dynamics and presents new challenges. We conclude with some perspectives for the field and the future application of optical tweezers. This Tutorial provides both a step-by-step guide ideal for non-specialists entering the field and a comprehensive manual of advanced techniques useful for expert practitioners. All the examples are complemented by the sample data and software necessary to reproduce them.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":" ","pages":""},"PeriodicalIF":27.1,"publicationDate":"2020-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48067510","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 82
Electro-optic frequency combs 电光频率梳
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-03-31 DOI: 10.1364/aop.382052
A. Parriaux, K. Hammani, G. Millot
{"title":"Electro-optic frequency combs","authors":"A. Parriaux, K. Hammani, G. Millot","doi":"10.1364/aop.382052","DOIUrl":"https://doi.org/10.1364/aop.382052","url":null,"abstract":"Frequency combs are optical spectra composed of a set of discrete equally spaced lines. Such spectra can be generated by diverse sources such as mode-locked lasers, resonators, or electro-optic modulators. This last possibility has shown a growing interest in the recent years for its advantageous features in providing high repetition rates, intrinsic mutual coherence, or high power per comb lines. Moreover, applications of electro-optic modulator-based combs have flourished in fundamental physics, spectroscopy, or instrumental calibrations. In this paper, we present the most recent progresses made on frequency combs generated by electro-optic modulators, along with the applications where these combs have shown a particular interest.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"12 1","pages":"223-287"},"PeriodicalIF":27.1,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47408725","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 103
Terahertz digital holographic imaging 太赫兹数字全息成像
IF 27.1 1区 物理与天体物理
Advances in Optics and Photonics Pub Date : 2020-03-31 DOI: 10.1364/aop.12.000001
M. Heimbeck, H. Everitt
{"title":"Terahertz digital holographic imaging","authors":"M. Heimbeck, H. Everitt","doi":"10.1364/aop.12.000001","DOIUrl":"https://doi.org/10.1364/aop.12.000001","url":null,"abstract":"This tutorial describes the application of digital holography to the terahertz spectral region and demonstrates how to reconstruct images of complex dielectric targets. Using highly coherent terahertz sources, high-fidelity amplitude and phase reconstructions are achieved, but because the millimeter-scale wavelengths approach the decimeter-sized targets and optical components, undesirable aperture diffraction degrades the quality of the reconstructions. Consequently, off-axis terahertz digital holography differs significantly from its visible light counterpart. This tutorial addresses these challenges within the angular spectrum method and the Fresnel approximation for digital hologram reconstruction, from which the longitudinal and transverse resolution limits may be specified. We observed longitudinal resolution (λ/284) almost two times better than has been achieved with visible light digital holographic microscopy and demonstrate that submicrometer longitudinal resolution is possible using millimeter wavelengths for an imager limited ultimately by the phase stability of the terahertz source and/or receiver. Minimizing the number of optical components, using only large reflective optics, maximizing the angle of the off-axis reference beam, and judicious selection of spatial frequency filters all contribute to improve the quality of the reconstructed image. As in visible wavelength analog holography, the observed transverse resolution in terahertz digital holography is comparable to the wavelength but improves for features near the edge of the imaged object compared with features near the center, a behavior characterized by a modified description of the holographic transfer function introduced here. Holograms were recorded by raster scanning a sensitive superheterodyne receiver, and several visibly transparent and opaque dielectric structures were quantitatively examined to demonstrate the compelling application of terahertz digital holography for nondestructive test, evaluation, and analysis.","PeriodicalId":48960,"journal":{"name":"Advances in Optics and Photonics","volume":"12 1","pages":"1-59"},"PeriodicalIF":27.1,"publicationDate":"2020-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45329652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 26
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信