AoB PlantsPub Date : 2025-01-10eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plae063
Tatiane Maria Rodrigues, Aline Rodrigues de Almeida, Juan de Nicolai, Igor Soares Dos Santos, Silvia Rodrigues Machado
{"title":"Interconnected idioblasts in <i>Peltaea polymorpha</i>: a novel component of the mucilage-secretory apparatus in Malvaceae.","authors":"Tatiane Maria Rodrigues, Aline Rodrigues de Almeida, Juan de Nicolai, Igor Soares Dos Santos, Silvia Rodrigues Machado","doi":"10.1093/aobpla/plae063","DOIUrl":"10.1093/aobpla/plae063","url":null,"abstract":"<p><p>The anatomical and cytological characteristics of the mucilage-secretory system have been widely studied in Malvaceae. However, conflicting information regarding the morphological nature of secretory structures exists, and some remain poorly understood. In this sense, some secretory structures in Malvaceae are not characterized as typical isolated idioblasts, canals, or cavities. Here, we describe a novel component of the mucilage-secretory apparatus in the Malvaceae family. Samples of the shoot apex, mature stem and fully expanded leaves were obtained from adult <i>Peltaea polymorpha,</i> which grow in the Cerrado (Brazilian savanna). The samples were processed using standard light and transmission electron microscopy methods. Mucilage cells occurred in the cortex and pith of petioles and stems, and in the midrib of leaves. These cells originate early in the stem apex from successive divisions of cells of the fundamental meristem, resulting in a row of interconnected secretory cells enveloped by a sheath of parenchyma cells devoid of secretory activity. Mucilage is stored in both protoplast and apoplast. In the same row, some cells filled with mucilage become very swollen and compress the neighbouring idioblasts that become flattened. This phenomenon results in a sandwich panel structure consisting of the swollen transversal walls of adjacent cells. As the differentiation progresses, the transversal walls of the rowed mucilage cells became very swollen, multilayered, and porous. Cytoplasmic strands cross such transversal walls connecting rowed cells. Mucilage-secreting cells in <i>P. polymorpha</i> are interconnected idioblasts and represent a novel component of the mucilage-secretory apparatus in Malvaceae. These findings open new avenues for understanding the structure and dynamics of mucilage-secreting cells from a functional perspective.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plae063"},"PeriodicalIF":2.6,"publicationDate":"2025-01-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11773387/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143060971","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2025-01-08eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plae070
Kaushalya Rathnayake, Amy L Parachnowitsch
{"title":"Drought drives selection for earlier flowering, while pollinators drive selection for larger flowers in annual <i>Brassica rapa</i>.","authors":"Kaushalya Rathnayake, Amy L Parachnowitsch","doi":"10.1093/aobpla/plae070","DOIUrl":"10.1093/aobpla/plae070","url":null,"abstract":"<p><p>Drought-induced changes in floral traits can disrupt plant-pollinator interactions, influencing pollination and reproductive success. These phenotypic changes likely also affect natural selection on floral traits, yet phenotypic selection studies manipulating drought remain rare. We studied how drought impacts selection to understand the potential evolutionary consequences of drought on floral traits. We used a factorial experiment with potted plants to manipulate both water availability (well-watered and drought) and pollination (open and supplemented). We examined the treatment effects on traits of <i>Brassica rapa</i> and estimated phenotypic selection and whether it was pollinator-mediated in these two abiotic conditions. Drought affected plant phenotypes, leading to plants with fewer flowers and ultimately lower seed production. Flowering time did not show variation with watering, but we found the strongest effect of drought on selection was for flowering time. There was a selection for flowering faster in drought but not well-watered conditions. Pollinators instead were the agents responsible for selection on flower size, but we did not find strong evidence that drought effected pollinator-mediated selection. There was a stronger selection for larger flowers in drought compared to well-watered plants, and it could be attributed to pollinators however, there was no significant difference between watering treatments. Our results show the effects of drought are not limited to phenotypic responses and may alter evolution in plants by changing phenotypic selection on traits. The connection between phenotypic plasticity and selection may be important to understand as we found the most variable trait (display size) was not under selection while the trait with different selection in drought (flowering time) did not change in response to drought. Our study highlights the importance of manipulating potential agents of selection, especially to understand fully the potential impacts of components of climate change such as drought.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plae070"},"PeriodicalIF":2.6,"publicationDate":"2025-01-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11758195/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143048424","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2025-01-04eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plae074
Jérôme Gélinas Bélanger
{"title":"Taming the wild: domesticating untapped northern fruit tree and shrub resources in the era of high-throughput technologies.","authors":"Jérôme Gélinas Bélanger","doi":"10.1093/aobpla/plae074","DOIUrl":"10.1093/aobpla/plae074","url":null,"abstract":"<p><p>New crop`s need to emerge to provide sustainable solutions to climate change and increasing abiotic and biotic constraints on agriculture. A large breadth of northern fruit trees and shrubs exhibit a high potential for domestication; however, obstacles to implementing traditional breeding methods have hampered or dissuaded efforts for improvement. This review article proposes a unique roadmap for <i>de novo</i> domestication of northern fruit crops, with a focus on biotechnological (e.g. genome editing, rapid cycle breeding, and <i>in planta</i> transformation) approaches that can boast rapid evolutionary gains. In addition, numerous biotechnological (e.g. virus-induced flowering and grafting-mediated flowering) and breeding strategies (e.g. adaptation of speed breeding to fruit trees) that can hasten the transition from juvenility to sexual maturity are described. A description of an accelerated genetic breeding strategy with insights for 16 underutilized species (e.g. shagbark hickory, running serviceberry, horse chestnut, and black walnut) is provided to support their enhancement. Deemed unrealistic only a decade ago, progress in the realm of bioengineering heralds a future for northern orphan crops through the implementation of fast-tracked crop improvement programs. As such, the roadmap presented in this article paves the way to integrating these novel biotechnological discoveries and propel the development of these forgotten crops in a sustainable and timely manner.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plae074"},"PeriodicalIF":2.6,"publicationDate":"2025-01-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11780843/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143069045","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2025-01-03eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plaf001
Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Bruno Clair
{"title":"Tropical tree species with high wood specific gravity have higher concentrations of wood phosphorus and are more efficient at resorbing it.","authors":"Andrés González-Melo, Juan Manuel Posada, Jacques Beauchêne, Romain Lehnebach, Bruno Clair","doi":"10.1093/aobpla/plaf001","DOIUrl":"10.1093/aobpla/plaf001","url":null,"abstract":"<p><p>Phosphorus (P) and potassium (K) play important roles in plant metabolism and hydraulic balance, respectively, while calcium (Ca) and magnesium (Mg) are important components of cell walls. Although significant amounts of these nutrients are found in wood, relatively little is known on how the wood concentrations of these nutrients are related to other wood traits, or on the factors driving the resorption of these nutrients within stems. We measured wood nutrient (i.e. P, K, Ca, and Mg) concentrations, wood specific gravity (WSG), as well as wood fibre and parenchyma fractions, in both inner (i.e. close to the pith) and outer (i.e. close to the bark) wood, for 22 tree species from a rainforest of eastern Amazonia. We first examined the associations of wood nutrient concentrations with WSG, fibre fractions, and parenchyma fractions. Then, we assessed whether resorption rates (i.e. difference between heartwood and sapwood nutrient contents) differed among nutrients, and whether nutrient resorption rates were related to species ecological strategies. WSG was unrelated to wood Ca, positively related to wood P in outer wood, and negatively related to inner wood Mg, as well as to both inner and outer wood K. Overall, nutrients were unrelated or negatively related to fibre and parenchyma fractions, except for wood Ca and wood P, which were positively related to fibre and axial parenchyma fractions in outer wood, respectively. We found that resorption rates did not differ among nutrients, and that P resorption rates were higher in high WSG, while K, Ca, and Mg resorption rates were unrelated to WSG. This study illustrates that the relationships of wood nutrient concentration with WSG and cell type fractions can be nutrient-specific. Our results indicate that, excluding a positive association between wood Ca and fibre fractions, and between wood P and axial parenchyma fractions, wood nutrients were mostly unrelated to anatomical traits. Our findings also suggest that high-WSG (i.e. shade-tolerant) species store higher amounts of wood P, and are more efficient at resorbing wood P, than low-WSG (i.e. fast-growing) species. These insights are important to increase our understanding on wood nutrient allocation, nutrient resorption, and tree ecological strategies in lowland tropical forests.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plaf001"},"PeriodicalIF":2.6,"publicationDate":"2025-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752641/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029922","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2024-12-31eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plae073
Michael Grillo, Andrés Gutiérrez
{"title":"Floral traits underlying mating system differentiation in the wind-pollinated sister species <i>Oryza rufipogon</i> and <i>Oryza nivara</i>.","authors":"Michael Grillo, Andrés Gutiérrez","doi":"10.1093/aobpla/plae073","DOIUrl":"10.1093/aobpla/plae073","url":null,"abstract":"<p><p>The shift from outcrossing to predominantly selfing is one of the most common transitions in plant evolution. This evolutionary shift has received considerable attention from biologists; however, this work has almost exclusively been focused on animal-pollinated systems. Despite the seminal ecological and economic importance of wind-pollinated species, the mechanisms controlling the degree of outcrossing in wind-pollinated taxa remain poorly understood. As a first step toward addressing this issue, we have conducted a comparative study of floral biology between two recently diverged sister species, <i>Oryza rufipogon</i> and <i>Oryza nivara</i> (Poaceae), that are wind-pollinated and possess distinct mating systems with <i>O. rufipogon</i> being outcrossing and <i>O. nivara</i> highly self-fertilized Therefore, these species present an ideal system for exploring mating system evolution in wind-pollinated taxa. We have identified key floral traits that differ between populations of these species and that are associated with mating system divergence including anther length, anther basal pore size, stigma papillae density, panicle shape, panicle exsertion, pollen viability, and early anther dehiscence. Of these traits, large anther basal pore size and early anther dehiscence are hypothesized to confer reliable autogamous selfing in <i>O. nivara</i>. Manipulations of floret number were conducted to partition the role of geitonogamy and autogamy in conferring self-fertilization. This experiment revealed that selfing in <i>O. nivara</i> is consistent with autogamous selfing, whereas <i>O. rufipogon</i> achieves selfing through geitonogamy. This study serves as a model for understanding the floral mechanisms controlling the outcrossing rate in other wind-pollinated systems, most notably other grasses.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plae073"},"PeriodicalIF":2.6,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752648/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2024-12-24eCollection Date: 2025-02-01DOI: 10.1093/aobpla/plae071
Vera Bekkers, Jochem Evers, Alvaro Lau
{"title":"Improving the 3D representation of plant architecture and parameterization efficiency of functional-structural tree models using terrestrial LiDAR data.","authors":"Vera Bekkers, Jochem Evers, Alvaro Lau","doi":"10.1093/aobpla/plae071","DOIUrl":"https://doi.org/10.1093/aobpla/plae071","url":null,"abstract":"<p><p>Functional-structural plant (FSP) models are useful tools for understanding plant functioning and how plants react to their environment. Developing tree FSP models is data-intensive and measuring tree architecture using conventional measurement tools is a laborious process. Light detection and ranging (LiDAR) could be an alternative nondestructive method to obtain structural information about tree architecture. This research investigated how terrestrial LiDAR (TLS)-derived tree traits could be used in the design and parameterization of tree FSP models. A systematic literature search was performed to create an overview of tree parameters needed for FSP model development. The resulting structural parameters were compared to LiDAR literature to get an overview of the possibilities and limitations. Furthermore, a tropical tree and Scots pine FSP model were selected and parametrized with TLS-derived parameters. Quantitative structural models were used to derive the parameters and a total of 37 TLS-scanned tropical trees and 10 Scots pines were included in the analysis. Ninety papers on FSP tree models were screened and eight papers fulfilled all the selection criteria. From these papers, 50 structural parameters used for FSP model development were identified, from which 28 parameters were found to be derivable from LiDAR. The TLS-derived parameters were compared to measurements, and the accuracy was variable. It was found that branch angle could be used as model input, but internode length was unsuitable. Outputs of the FSP models with TLS-derived branch angle differed from the FSP model outcomes with default branch angle. Results showed that it is possible to use TLS for FSP model inputs, although with caution as this has implications for the model variable outputs. In the future, LiDAR could help improve efficiency in building new FSP models, increase the accuracy of existing models, add metrics for optimization, and open new possibilities to explore previously unobtainable plant traits.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 2","pages":"plae071"},"PeriodicalIF":2.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11826235/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143442549","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2024-12-24eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plae069
Simon Rouet, Jean-Louis Durand, Alice Troux, Romain Barillot
{"title":"Experimental analysis of genetic and environmental interactions on leaf elongation and reproductive development in <i>Lolium perenne</i>.","authors":"Simon Rouet, Jean-Louis Durand, Alice Troux, Romain Barillot","doi":"10.1093/aobpla/plae069","DOIUrl":"10.1093/aobpla/plae069","url":null,"abstract":"<p><p>Perennial grasses' reproductive phenology profoundly impacts plant morphogenesis, biomass production, and perenniality in natural ecosystems and cultivated grasslands. Complex interactions between vegetative and reproductive development complicate grass phenology prediction for various environments and genotypes. This work aims to analyse genetic × environment interactions effects on tiller growth and reproductive development in <i>Lolium perenne.</i> Three perennial ryegrass cultivars, Bronsyn, Carvalis, and Tryskal, were grown from seedling to heading under four inductive conditions. T0 plants were continuously exposed to high temperatures and long days (HT-LD). T1, T2, and T3, plants were initially exposed to low temperatures and short days (LT-SD) for 9 weeks. Then, T1 plants were immediately transferred to high temperatures and long days (HT-LD). Before their exposure to HT-LD, T2, and T3 plants were first transferred to high temperatures and short days (HT-SD) for 3 and 6 weeks, respectively. Leaf length, leaf emergence, and heading were regularly monitored. Floral transition and heading only occurred in T1, T2, and T3, i.e. after successive exposure to low temperature and long photoperiod. Bronsyn had higher heading earliness and proportion of reproductive tillers than Carvalis and Tryskal. The duration of HT-SD exposure affected the final number of leaves and spikelets. The rate of leaf and spikelet production significantly increased once plants were exposed to LD. Our results suggest an additive effect of the photoperiod and floral transition on leaf elongation rate. These findings enhance our understanding of the genetic × environment interactions on the vegetative and reproductive development in perennial ryegrass.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plae069"},"PeriodicalIF":2.6,"publicationDate":"2024-12-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11756295/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029967","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2024-12-09eCollection Date: 2024-12-01DOI: 10.1093/aobpla/plae064
{"title":"Correction to: Grass leaf structural and stomatal trait responses to climate gradients assessed over the 20th century and across the Great Plains, USA.","authors":"","doi":"10.1093/aobpla/plae064","DOIUrl":"https://doi.org/10.1093/aobpla/plae064","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1093/aobpla/plae055.].</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"16 6","pages":"plae064"},"PeriodicalIF":2.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11631048/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142807956","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2024-12-09eCollection Date: 2025-02-01DOI: 10.1093/aobpla/plae067
Tamara C Ochoa-Alvarez, Gonzalo Contreras-Negrete, Libny Ingrid Lara-De La Cruz, Antonio González-Rodríguez
{"title":"Landscape-level variation in spring leaf phenology is driven by precipitation seasonality in the Mexican red oak <i>Quercus castanea</i>.","authors":"Tamara C Ochoa-Alvarez, Gonzalo Contreras-Negrete, Libny Ingrid Lara-De La Cruz, Antonio González-Rodríguez","doi":"10.1093/aobpla/plae067","DOIUrl":"https://doi.org/10.1093/aobpla/plae067","url":null,"abstract":"<p><p>Water availability is one of the essential factors that determine the distribution of plant species, as well as their ecological strategies. The study of leaf phenology, in conjunction with other leaf traits of an ecological nature, such as functional traits, makes it possible to determine the life history strategies of plant species and their variation along environmental gradients, which in turn influences the demographic rates of populations. In the present study, we analysed the effect of water availability at the landscape scale on spring leaf phenology and foliar traits such as leaf mass per area (LMA) and leaf thickness (LT) in the oak species <i>Quercus castanea</i> from a tropical latitude in central-western Mexico. Six sites were selected in the Cuitzeo basin, Michoacán, across a water availability gradient, ranging from 766 mm to 1145 mm of mean annual precipitation. Leaf samples were collected from 10 adult trees at each site and LT and LMA were estimated. Leaf phenology was monitored for each tree every two weeks between March and July for two consecutive years, 2021 and 2022, alongside soil moisture measurements. Temperature and precipitation variables for the two study years were obtained from meteorological stations and long-term bioclimatic variables from the Worldclim database. Significant spatial and temporal variation in leaf phenology was observed. Earlier leaf development and shorter development times were observed with increased soil moisture in March and April, and with higher precipitation in October of the previous year. Also, sites with long-term higher precipitation seasonality and with lower precipitation of the warmest quarter showed longer development times. A positive association between development times and leaf thickness was also observed. <i>Quercus castanea</i> shows a brevideciduous leaf phenology but with significant variation among populations, reflecting spatiotemporal mosaics of environmental and genetic variation and in covariation with leaf functional traits such as leaf thickness.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 2","pages":"plae067"},"PeriodicalIF":2.6,"publicationDate":"2024-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12038158/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144008383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
AoB PlantsPub Date : 2024-11-21eCollection Date: 2025-01-01DOI: 10.1093/aobpla/plae061
Charlotte Møller, Martí March-Salas, Pieter De Frenne, J F Scheepens
{"title":"Local adaptation and phenotypic plasticity in two forest understorey herbs in response to forest management intensity.","authors":"Charlotte Møller, Martí March-Salas, Pieter De Frenne, J F Scheepens","doi":"10.1093/aobpla/plae061","DOIUrl":"10.1093/aobpla/plae061","url":null,"abstract":"<p><p>Local adaptation is a common phenomenon that helps plant populations to adjust to broad-scale environmental heterogeneity. Given the strong effect of forest management on the understorey microenvironment and often long-term effects of forest management actions, it seems likely that understorey herbs may have locally adapted to the practiced management regime and induced environmental variation. We investigated the response of <i>Anemone nemorosa</i> and <i>Milium effusum</i> to forest management using a transplant experiment along a silvicultural management intensity gradient. Genets were sampled from sites with contrasting management intensities and transplanted sympatrically, near allopatrically and far allopatrically along the management intensity gradient to test for local adaptation and phenotypic plasticity, as well as to sites where the species were absent to test for recruitment versus dispersal limitations. We then measured survival and fitness traits over two growing seasons. We found only little evidence of local adaptation in <i>A. nemorosa</i> and <i>M. effusum</i>, whereas various traits in both species showed linear plastic changes in response to transplantation along the forest management intensity gradient. Furthermore, <i>A. nemorosa</i> performed worse when transplanted to unoccupied sites, suggesting recruitment limitation, whereas <i>M. effusum</i> performed better in unoccupied sites, suggesting dispersal limitation. Altogether, our results underpin the importance of forest management to indirectly drive phenotypic variation among populations of forest plants.</p>","PeriodicalId":48955,"journal":{"name":"AoB Plants","volume":"17 1","pages":"plae061"},"PeriodicalIF":2.6,"publicationDate":"2024-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11752646/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143029913","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}