{"title":"The eigenvalues, numerical ranges, and invariant subspaces of the Bergman Toeplitz operators over the bidisk","authors":"Yongning Li, Yin Zhao, Xuanhao Ding","doi":"10.1007/s43034-024-00336-x","DOIUrl":"10.1007/s43034-024-00336-x","url":null,"abstract":"<div><p>In this paper, we consider several questions about the eigenvalues, the numerical ranges, and the invariant subspaces of the Toeplitz operator on the Bergman space over the bidisk and we obtain the corresponding results.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586965","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Characterizations for boundedness of fractional maximal function commutators in variable Lebesgue spaces on stratified groups","authors":"Wenjiao Zhao, Jianglong Wu","doi":"10.1007/s43034-024-00334-z","DOIUrl":"10.1007/s43034-024-00334-z","url":null,"abstract":"<div><p>In this paper, the main aim is to consider the mapping properties of the maximal or nonlinear commutator for the fractional maximal operator with the symbols belong to the Lipschitz spaces on variable Lebesgue spaces in the context of stratified Lie groups, with the help of which some new characterizations to the Lipschitz spaces and nonnegative Lipschitz functions are obtained in the stratified groups context. Meanwhile, some equivalent relations between the Lipschitz norm and the variable Lebesgue norm are also given.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140586677","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The essential spectrums of (2times 2) unbounded anti-triangular operator matrices","authors":"Xinran Liu, Deyu Wu","doi":"10.1007/s43034-024-00337-w","DOIUrl":"10.1007/s43034-024-00337-w","url":null,"abstract":"<div><p>Let </p><div><div><span>$$begin{aligned} {mathcal {T}}=left( begin{array}{cc} 0 &{}quad B C &{}quad D end{array} right) :D(C)times D(B)subset Xtimes Xrightarrow Xtimes X end{aligned}$$</span></div></div><p>be a <span>(2times 2)</span> unbounded anti-triangular operator matrix on complex Hilbert space <span>(Xtimes X)</span>. Using the relative compact perturbation theory and the space decomposition method, the seven essential spectrum equalities are characterized as </p><div><div><span>$$begin{aligned} sigma _{ei}({mathcal {T}})={lambda in mathbb C:lambda ^2in sigma _{ei}(BC)cup sigma _{ei}(CB)},~~~~iin {1,~2,~3,~4,~5,~6,~7}, end{aligned}$$</span></div></div><p>where <span>(sigma _{ei}(cdot ))</span> (<span>(i=1,ldots ,7)</span>) denote the Gustafson essential spectrum, Weidmann essential spectrum, Kato essential spectrum, Wolf essential spectrum, Schechter essential spectrum, essential approximation point spectrum, and essential defect spectrum, respectively. An example is also provided to illustrate the validity of the criterion.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140358241","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Harmonic Bloch space on the real hyperbolic ball","authors":"A. Ersin Üreyen","doi":"10.1007/s43034-024-00335-y","DOIUrl":"10.1007/s43034-024-00335-y","url":null,"abstract":"<div><p>We study the Bloch and the little Bloch spaces of harmonic functions on the real hyperbolic ball. We show that the Bergman projections from <span>(L^infty ({mathbb {B}}))</span> to <span>({mathcal {B}})</span>, and from <span>(C_0({mathbb {B}}))</span> to <span>({mathcal {B}}_0)</span> are onto. We verify that the dual space of the hyperbolic harmonic Bergman space <span>({mathcal {B}}^1_alpha )</span> is <span>({mathcal {B}})</span> and its predual is <span>({mathcal {B}}_0)</span>. Finally, we obtain atomic decompositions of Bloch functions as series of Bergman reproducing kernels.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00335-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140313702","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials","authors":"Tiezheng Li, Guangsheng Wei","doi":"10.1007/s43034-024-00333-0","DOIUrl":"10.1007/s43034-024-00333-0","url":null,"abstract":"<div><p>We consider self-adjoint Dirac-type systems with rectangular matrix potentials on the interval [0, <i>b</i>), where <span>(0<ble infty .)</span> We present a new proof of the local Borg–Marchenko uniqueness theorem. The high-energy asymptotics of the Weyl–Titchmarsh functions and the local Borg–Marchenko uniqueness theorem are derived for locally smooth potentials at the right endpoint.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140303201","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Application of Banach limits to invariant measures of infinite-dimensional Hamiltonian flows","authors":"V. Zh. Sakbaev","doi":"10.1007/s43034-024-00332-1","DOIUrl":"10.1007/s43034-024-00332-1","url":null,"abstract":"<div><p>Applying an invariant measure on phase space, we study the Koopman representation of a group of symplectomorphisms in an infinite-dimensional Hilbert space equipped with a translation-invariant symplectic form. The phase space is equipped with a finitely additive measure, invariant under the group of symplectomorphisms generated by Liouville-integrable Hamiltonian systems. We construct an invariant measure of Lebesgue type by applying a special countable product of Lebesgue measures on real lines. An invariant measure of Banach type is constructed by applying a countable product of Banach measures (defined by the Banach limit) on real lines. One of the advantages of an invariant measure of Banach type compared to an invariant measure of Lebesgue type is finiteness of the values of this measure in the entire space. The introduced invariant measures help us to describe both the strong continuity subspaces of the Koopman unitary representation of an infinite-dimensional Hamiltonian flow and the spectral properties of the constraint generator of the unitary representation on the invariant strong continuity subspace.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140199063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"M-serially summing operators on Banach lattices","authors":"Fu Zhang, Hanhan Shen, Zili Chen","doi":"10.1007/s43034-024-00331-2","DOIUrl":"10.1007/s43034-024-00331-2","url":null,"abstract":"<div><p>Let <i>E</i>, <i>F</i> be Banach lattices, where <i>E</i> has the disjoint Riesz decomposition property. For a lattice homomorphism <span>(T:Erightarrow F)</span> and a bounded subset <i>A</i> of <i>E</i>, we establish a necessary and sufficient condition under which <i>TA</i> is <i>b</i>-order bounded. Based on this, we study the <i>b</i>-order boundedness of subsets of <i>E</i> and obtain several characterizations of <i>AM</i>-spaces. Furthermore, we introduce and investigate a novel type of operators referred to as <i>M</i>-serially summing operator. The connections of this category of operators with classical notions of operators, such as majorizing operators, preregular operators and serially summing operators, are considered.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140147232","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Disjoint subspace-hypercyclic operators on separable Banach spaces","authors":"Renyu Chen, Xiang Chen, Zehua Zhou","doi":"10.1007/s43034-024-00322-3","DOIUrl":"10.1007/s43034-024-00322-3","url":null,"abstract":"<div><p>In this paper, we initially introduce the concept of disjoint subspace-hypercyclic operators and illustrate that disjoint subspace-hypercyclic operators differ from disjoint hypercyclic operators. Furthermore, we obtain two different criteria for disjoint subspace-hypercyclic operators. Finally, we discover an equivalent condition regarding the bilateral forward weighted shift operators’ disjoint subspace-transitivity on <span>(c_{0}(mathbb {Z}))</span> or <span>(l^{p}(mathbb {Z}))</span> in a certain special case.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Block dual Toeplitz operators on the orthogonal complement of the Dirichlet space","authors":"Chunxu Xu, Jianxiang Dong, Tao Yu","doi":"10.1007/s43034-024-00329-w","DOIUrl":"10.1007/s43034-024-00329-w","url":null,"abstract":"<div><p>We give some characterizations of block dual Toeplitz operators acting on the orthogonal complement of the Dirichlet space. We characterized the compactness of the finite sum of block dual Toeplitz products. Commuting block dual Toeplitz operators and quasinormal block dual Toeplitz operators are also considered.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140129123","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Some new weighted weak-type iterated and bilinear modified Hardy inequalities","authors":"V. García García, P. Ortega Salvador","doi":"10.1007/s43034-024-00327-y","DOIUrl":"10.1007/s43034-024-00327-y","url":null,"abstract":"<div><p>We characterize the good weights for some weighted weak-type iterated and bilinear modified Hardy inequalities to hold.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2,"publicationDate":"2024-03-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s43034-024-00327-y.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140019097","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}