The essential spectrums of \(2\times 2\) unbounded anti-triangular operator matrices

IF 1.2 3区 数学 Q1 MATHEMATICS
Xinran Liu, Deyu Wu
{"title":"The essential spectrums of \\(2\\times 2\\) unbounded anti-triangular operator matrices","authors":"Xinran Liu,&nbsp;Deyu Wu","doi":"10.1007/s43034-024-00337-w","DOIUrl":null,"url":null,"abstract":"<div><p>Let </p><div><div><span>$$\\begin{aligned} {\\mathcal {T}}=\\left( \\begin{array}{cc} 0 &amp;{}\\quad B \\\\ C &amp;{}\\quad D \\\\ \\end{array} \\right) :D(C)\\times D(B)\\subset X\\times X\\rightarrow X\\times X \\end{aligned}$$</span></div></div><p>be a <span>\\(2\\times 2\\)</span> unbounded anti-triangular operator matrix on complex Hilbert space <span>\\(X\\times X\\)</span>. Using the relative compact perturbation theory and the space decomposition method, the seven essential spectrum equalities are characterized as </p><div><div><span>$$\\begin{aligned} \\sigma _{ei}({\\mathcal {T}})=\\{\\lambda \\in \\mathbb C:\\lambda ^2\\in \\sigma _{ei}(BC)\\cup \\sigma _{ei}(CB)\\},~~~~i\\in \\{1,~2,~3,~4,~5,~6,~7\\}, \\end{aligned}$$</span></div></div><p>where <span>\\(\\sigma _{ei}(\\cdot )\\)</span> (<span>\\(i=1,\\ldots ,7\\)</span>) denote the Gustafson essential spectrum, Weidmann essential spectrum, Kato essential spectrum, Wolf essential spectrum, Schechter essential spectrum, essential approximation point spectrum, and essential defect spectrum, respectively. An example is also provided to illustrate the validity of the criterion.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":null,"pages":null},"PeriodicalIF":1.2000,"publicationDate":"2024-03-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00337-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

Abstract

Let

$$\begin{aligned} {\mathcal {T}}=\left( \begin{array}{cc} 0 &{}\quad B \\ C &{}\quad D \\ \end{array} \right) :D(C)\times D(B)\subset X\times X\rightarrow X\times X \end{aligned}$$

be a \(2\times 2\) unbounded anti-triangular operator matrix on complex Hilbert space \(X\times X\). Using the relative compact perturbation theory and the space decomposition method, the seven essential spectrum equalities are characterized as

$$\begin{aligned} \sigma _{ei}({\mathcal {T}})=\{\lambda \in \mathbb C:\lambda ^2\in \sigma _{ei}(BC)\cup \sigma _{ei}(CB)\},~~~~i\in \{1,~2,~3,~4,~5,~6,~7\}, \end{aligned}$$

where \(\sigma _{ei}(\cdot )\) (\(i=1,\ldots ,7\)) denote the Gustafson essential spectrum, Weidmann essential spectrum, Kato essential spectrum, Wolf essential spectrum, Schechter essential spectrum, essential approximation point spectrum, and essential defect spectrum, respectively. An example is also provided to illustrate the validity of the criterion.

2 次 $$$ 无约束反三角算子矩阵的本质谱
让 $$begin{aligned} {\mathcal {T}}=\left( (开始{array}{cc} 0 &{} (四边形 B\ C &{} (四边形 D\\end{array}\Right) :D(C)/times D(B)/subset X\times X\rightrow X\times X\end{aligned}$$be a \(2\times 2\) unbounded anti-triangular operator matrix on complex Hilbert space\(X\times X\).利用相对紧凑扰动理论和空间分解方法,七个基本谱等式的特征为 $$\begin{aligned}\sigma _{ei}({\mathcal {T}})=\{lambda \ in \mathbb C:\lambda ^2\in \sigma _{ei}(BC)\cup \sigma _{ei}(CB)\},~~~~i\in \{1,~2,~3,~4,~5,~6,~7\}, \end{aligned}$$ 其中 \(\sigma _{ei}(\cdot )\) (\(i=1,\ldots ,7\)) 表示古斯塔夫森基本谱、Weidmann 基本谱、Kato 基本谱、Wolf 基本谱、Schechter 基本谱、基本近似点谱和基本缺陷谱。我们还提供了一个例子来说明该准则的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信