具有右端点局部平滑矩形势的狄拉克型系统的局部博格-马尔钦科唯一性定理

IF 1.2 3区 数学 Q1 MATHEMATICS
Tiezheng Li, Guangsheng Wei
{"title":"具有右端点局部平滑矩形势的狄拉克型系统的局部博格-马尔钦科唯一性定理","authors":"Tiezheng Li,&nbsp;Guangsheng Wei","doi":"10.1007/s43034-024-00333-0","DOIUrl":null,"url":null,"abstract":"<div><p>We consider self-adjoint Dirac-type systems with rectangular matrix potentials on the interval [0, <i>b</i>),  where <span>\\(0&lt;b\\le \\infty .\\)</span> We present a new proof of the local Borg–Marchenko uniqueness theorem. The high-energy asymptotics of the Weyl–Titchmarsh functions and the local Borg–Marchenko uniqueness theorem are derived for locally smooth potentials at the right endpoint.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials\",\"authors\":\"Tiezheng Li,&nbsp;Guangsheng Wei\",\"doi\":\"10.1007/s43034-024-00333-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We consider self-adjoint Dirac-type systems with rectangular matrix potentials on the interval [0, <i>b</i>),  where <span>\\\\(0&lt;b\\\\le \\\\infty .\\\\)</span> We present a new proof of the local Borg–Marchenko uniqueness theorem. The high-energy asymptotics of the Weyl–Titchmarsh functions and the local Borg–Marchenko uniqueness theorem are derived for locally smooth potentials at the right endpoint.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00333-0\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00333-0","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

我们考虑在区间 [0, b) 上具有矩形矩阵势的自联合狄拉克型系统,其中 \(0<b\le \infty .\) 我们提出了局部博格-马尔琴科唯一性定理的新证明。对于右端点的局部平滑势,我们导出了韦尔-蒂奇马什函数的高能渐近线和局部博格-马尔琴科唯一性定理。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
The local Borg–Marchenko uniqueness theorem for Dirac-type systems with locally smooth at the right endpoint rectangular potentials

We consider self-adjoint Dirac-type systems with rectangular matrix potentials on the interval [0, b),  where \(0<b\le \infty .\) We present a new proof of the local Borg–Marchenko uniqueness theorem. The high-energy asymptotics of the Weyl–Titchmarsh functions and the local Borg–Marchenko uniqueness theorem are derived for locally smooth potentials at the right endpoint.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Annals of Functional Analysis
Annals of Functional Analysis MATHEMATICS, APPLIED-MATHEMATICS
CiteScore
2.00
自引率
10.00%
发文量
64
期刊介绍: Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group. Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory. Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信