{"title":"迪里希勒空间正交补集上的整块对偶托普利兹算子","authors":"Chunxu Xu, Jianxiang Dong, Tao Yu","doi":"10.1007/s43034-024-00329-w","DOIUrl":null,"url":null,"abstract":"<div><p>We give some characterizations of block dual Toeplitz operators acting on the orthogonal complement of the Dirichlet space. We characterized the compactness of the finite sum of block dual Toeplitz products. Commuting block dual Toeplitz operators and quasinormal block dual Toeplitz operators are also considered.</p></div>","PeriodicalId":48858,"journal":{"name":"Annals of Functional Analysis","volume":"15 2","pages":""},"PeriodicalIF":1.2000,"publicationDate":"2024-03-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Block dual Toeplitz operators on the orthogonal complement of the Dirichlet space\",\"authors\":\"Chunxu Xu, Jianxiang Dong, Tao Yu\",\"doi\":\"10.1007/s43034-024-00329-w\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>We give some characterizations of block dual Toeplitz operators acting on the orthogonal complement of the Dirichlet space. We characterized the compactness of the finite sum of block dual Toeplitz products. Commuting block dual Toeplitz operators and quasinormal block dual Toeplitz operators are also considered.</p></div>\",\"PeriodicalId\":48858,\"journal\":{\"name\":\"Annals of Functional Analysis\",\"volume\":\"15 2\",\"pages\":\"\"},\"PeriodicalIF\":1.2000,\"publicationDate\":\"2024-03-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Annals of Functional Analysis\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s43034-024-00329-w\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Annals of Functional Analysis","FirstCategoryId":"100","ListUrlMain":"https://link.springer.com/article/10.1007/s43034-024-00329-w","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Block dual Toeplitz operators on the orthogonal complement of the Dirichlet space
We give some characterizations of block dual Toeplitz operators acting on the orthogonal complement of the Dirichlet space. We characterized the compactness of the finite sum of block dual Toeplitz products. Commuting block dual Toeplitz operators and quasinormal block dual Toeplitz operators are also considered.
期刊介绍:
Annals of Functional Analysis is published by Birkhäuser on behalf of the Tusi Mathematical Research Group.
Ann. Funct. Anal. is a peer-reviewed electronic journal publishing papers of high standards with deep results, new ideas, profound impact, and significant implications in all areas of functional analysis and all modern related topics (e.g., operator theory). Ann. Funct. Anal. normally publishes original research papers numbering 18 or fewer pages in the journal’s style. Longer papers may be submitted to the Banach Journal of Mathematical Analysis or Advances in Operator Theory.
Ann. Funct. Anal. presents the best paper award yearly. The award in the year n is given to the best paper published in the years n-1 and n-2. The referee committee consists of selected editors of the journal.