BioEnergy Research最新文献

筛选
英文 中文
Pulsed drip irrigation reduces sugarcane water consumption and improves growth, productivity, sugar and ethanol yields 脉冲滴灌减少甘蔗耗水量,提高生长、生产力、糖和乙醇产量
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-27 DOI: 10.1007/s12155-024-10729-4
Sirleide Maria de Menezes, Gerônimo Ferreira da Silva, Manassés Mesquita da Silva, José Edson Florentino de Morais, Maria Catiana de Vasconcelos, Carolayne Silva de Souza, Djalma Euzébio Simões Neto, Mário Monteiro Rolim
{"title":"Pulsed drip irrigation reduces sugarcane water consumption and improves growth, productivity, sugar and ethanol yields","authors":"Sirleide Maria de Menezes,&nbsp;Gerônimo Ferreira da Silva,&nbsp;Manassés Mesquita da Silva,&nbsp;José Edson Florentino de Morais,&nbsp;Maria Catiana de Vasconcelos,&nbsp;Carolayne Silva de Souza,&nbsp;Djalma Euzébio Simões Neto,&nbsp;Mário Monteiro Rolim","doi":"10.1007/s12155-024-10729-4","DOIUrl":"10.1007/s12155-024-10729-4","url":null,"abstract":"<div><p>The water deficit resulting from climate variations limits the profitability and sustainability of sugarcane fields, making water supply through irrigation necessary to sustain the potential production of sugarcane. However, the water used for irrigation purposes must be properly managed, ensuring the conservation of water resources and the reduction of costs with the use of inputs and energy. Pulsed drip irrigation aims to support irrigation management, improving the efficient use of water and mitigating the deleterious effects of water deficit. This study aims to evaluate the growth, productivity, and industrial yield of sugarcane cultivated under continuous and pulsed drip irrigation. A field experiment was conducted at the Experimental Sugarcane Station of Carpina, in Carpina in the State of Pernambuco, Northeast Brazil, from December 2020 to December 2021. The experimental arrangement was randomized blocks in a 2 x 5 factorial design, with two types of irrigation application (pulsed and continuous) and five irrigation levels (40, 60, 80, 100, and 120% of crop evapotranspiration – ETc), with four replications. Pulsed drip irrigation increased the yield of stalks (9%) and sugar (21%) in the sugarcane crop and ethanol (17%) derived from sugar in the juice. Pulsed drip irrigation, when compared to continuous irrigation, improved the performance of sugarcane, providing a reduction in water consumption and increasing growth, stalk yield, sugar and predicted ethanol yield. Thus, based on this study, pulse irrigation is an efficient approach to irrigation management, contributing to the stability of sugarcane production while conserving water relative to continuous irrigation.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1413 - 1424"},"PeriodicalIF":3.1,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981182","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hemicellulose Biomass Degree of Acetylation (Natural Versus Chemical Acetylation) as a Strategy for Based Packaging Materials 半纤维素生物质乙酰化程度(自然乙酰化与化学乙酰化)作为包装材料基材的一种策略
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-27 DOI: 10.1007/s12155-024-10734-7
Júlia Ribeiro Martins, Jaiber Humberto Rodriguez Llanos, Vagner Botaro, Adilson Roberto Gonçalves, Michel Brienzo
{"title":"Hemicellulose Biomass Degree of Acetylation (Natural Versus Chemical Acetylation) as a Strategy for Based Packaging Materials","authors":"Júlia Ribeiro Martins,&nbsp;Jaiber Humberto Rodriguez Llanos,&nbsp;Vagner Botaro,&nbsp;Adilson Roberto Gonçalves,&nbsp;Michel Brienzo","doi":"10.1007/s12155-024-10734-7","DOIUrl":"10.1007/s12155-024-10734-7","url":null,"abstract":"<div><p>Facing increasing social, environmental, and economic pressure to substitute non-renewable fossil resources with renewable ones, hemicellulose has received attention as a substrate for the production of high-value products such as packaging materials because of its non-toxicity, abundance, and biodegradability. Hemicelluloses in the cell wall are naturally substituted with acetyl groups, and the degree and pattern of acetylation vary among plant species, tissue and cell types, and plant maturity. Hemicellulose acetylation influences features such as the flexural properties of wood, polysaccharide interactions, plant growth, and stress resistance. However, hemicellulose is deacetylated during its separation from other biomass polymers, mainly via alkaline solubilization. Therefore, when industrial applications require a certain degree of acetylation, chemical acetylation is necessary, which occurs through an esterification reaction that links acetyl groups to hemicellulose, catalyzed or not. Acetylation may enhance some features of hemicellulose-based packaging materials, such as mechanical strength, processability, thermal stability, hydrophobicity, and oxygen and water vapor permeability. This review provides an update on the latest advances in plant polysaccharide acetylation, including the acetylation mechanism in the plant cell wall as well as the influence of such esterification on plant properties and wood industrial application. Recent developments and progress in hemicellulose chemical acetylation strategies have been summarized, disclosing the advantages and disadvantages of different solvents and catalysts applied and acetylation evaluation methods.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 2","pages":"877 - 896"},"PeriodicalIF":3.1,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140007650","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Co-Pyrolysis of Peanut Shells and Tea Plant Branches: Physicochemical Properties, Synergistic Effect and Thermo-Kinetic Analyses 花生壳与茶树枝条的协同热解:理化性质、协同效应和热动力学分析
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-27 DOI: 10.1007/s12155-024-10728-5
Tarique Ahmed Memon, Xiaoke Ku, Vikul Vasudev
{"title":"Co-Pyrolysis of Peanut Shells and Tea Plant Branches: Physicochemical Properties, Synergistic Effect and Thermo-Kinetic Analyses","authors":"Tarique Ahmed Memon,&nbsp;Xiaoke Ku,&nbsp;Vikul Vasudev","doi":"10.1007/s12155-024-10728-5","DOIUrl":"10.1007/s12155-024-10728-5","url":null,"abstract":"<div><p>Co-pyrolysis behaviors of peanut shells (PS) and tea plant branches (TPB) were explored with a focus on the physicochemical properties, thermal degradation behavior, synergistic effect, and thermo-kinetic analyses. The differences between individual biomass and the equivalent blend were also highlighted. Results showed that the blend sample showed an enhancement in fixed carbon content but a reduction in moisture and ash contents, when compared to those of the individual PS. The average activation energies (<i>E</i><sub>a</sub>) of the equivalent blend estimated by three isoconversional methods (i.e., Friedman, KAS, and Starink methods) were 181.65, 166.87, and 167.14 kJ/mol, respectively. The average <i>E</i><sub>a</sub> and Δ<i>H</i> of the blend were quite lower than those of the TPB but slightly higher than those of the PS. During pyrolysis, Δ<i>H</i> and Δ<i>G</i> exhibited positive values which showed the decomposition was endothermic and non-spontaneous. Negative Δ<i>S</i> values were first observed, followed by positive Δ<i>S</i> values at late conversion stage.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1805 - 1815"},"PeriodicalIF":3.1,"publicationDate":"2024-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139981166","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of Pyrolysis Temperature on the Production of Biochar and Biomethanol from Sugarcane Bagasse 热解温度对利用甘蔗渣生产生物炭和生物甲醇的影响
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-23 DOI: 10.1007/s12155-024-10733-8
Peter Gabriel Almeida Souza, Jaqueline do Carmo Lima Carvalho, Lorrana Zelia Martins de Souza, Evaneide Nascimento Lima, Mariana Guerra de Aguilar, Robson Pereira Lima, Osania Emerenciano Ferreira, Lúcia Pinheiro Santos Pimenta, Alan Rodrigues Teixeira Machado
{"title":"Effect of Pyrolysis Temperature on the Production of Biochar and Biomethanol from Sugarcane Bagasse","authors":"Peter Gabriel Almeida Souza,&nbsp;Jaqueline do Carmo Lima Carvalho,&nbsp;Lorrana Zelia Martins de Souza,&nbsp;Evaneide Nascimento Lima,&nbsp;Mariana Guerra de Aguilar,&nbsp;Robson Pereira Lima,&nbsp;Osania Emerenciano Ferreira,&nbsp;Lúcia Pinheiro Santos Pimenta,&nbsp;Alan Rodrigues Teixeira Machado","doi":"10.1007/s12155-024-10733-8","DOIUrl":"10.1007/s12155-024-10733-8","url":null,"abstract":"<div><p>Biochar is recognized for its potential in mitigating climate change, especially through carbon sequestration and soil improvement. To this end, it is important to use all co-products from pyrolysis in a sustainable and economically viable way. In this study, the conversion of sugarcane bagasse at varying pyrolysis temperatures was investigated using <sup>1</sup>H NMR spectroscopy and Chenomx for liquid fraction analysis. The yield of biochar decreased significantly from 45.3 to 3.5% with a temperature increase of 300 to 1000 °C. The morphological analysis revealed that biochar produced at lower temperatures (300 °C and 400 °C) showed tubular and spongy structures, whereas at higher temperatures (600 °C and 800 °C), the structures morphed into holes and thinned further, ultimately degrading further at 1000 °C. All samples of biochar showed characteristics promising for soil improvement and carbon sequestration (O/C &lt; 0.4). The analysis of liquid fractions revealed that biomethanol reached its highest concentration of 19.28 mM at 800 °C, which coincided with the highest production of acetic and lactic acids. Additionally, the highest concentration of acetone was observed at 600 °C. These findings highlight the importance of optimizing pyrolysis conditions for enhanced yields of biochar and platform compounds, as well as the potential of the NMR and Chenomx in bioenergy research.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1394 - 1401"},"PeriodicalIF":3.1,"publicationDate":"2024-02-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139953370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bioethanol Production from Alkali-Treated Corn Stover via Acidic Adjustment by Furfural Residue 通过糠醛残渣的酸性调节利用碱处理过的玉米秸秆生产生物乙醇
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-22 DOI: 10.1007/s12155-024-10727-6
Mengxuan Zhang, Yunyun Liu, Wentao Li, Wen Wang, Cuiyi Liang, Yu Zhang, Bao Jia, Wei Qi
{"title":"Bioethanol Production from Alkali-Treated Corn Stover via Acidic Adjustment by Furfural Residue","authors":"Mengxuan Zhang,&nbsp;Yunyun Liu,&nbsp;Wentao Li,&nbsp;Wen Wang,&nbsp;Cuiyi Liang,&nbsp;Yu Zhang,&nbsp;Bao Jia,&nbsp;Wei Qi","doi":"10.1007/s12155-024-10727-6","DOIUrl":"10.1007/s12155-024-10727-6","url":null,"abstract":"<div><p>The unwashed alkali-treated lignocellulose can be directly enzymatically hydrolyzed and fermented via pH adjustment with acids. The use of acids would give a burden on production cost. Furfural residue (FR) which is the acidic solid waste from lignocellulose-derived furfural production process was employed in this study as a pH regulator. The corn cob-derived FR was used to adjust the pH value of alkali-treated corn stover (PCS) to 4.8 for enzymatic hydrolysis and ethanol fermentation. The unwashed PCS adjusted by FR got higher enzymatic hydrolysis efficiency (EHE) than the washed PCS samples. Meanwhile, the mixing of PCS and FR had a synergistic effect on the EHE of PCS. The fermentation of enzymatic hydrolysate from unwashed PCS-FR mixture at 20% solid concentration could attain ethanol production of 26.54 ± 0.02 mg/mL with a yield of 89.53 ± 0.08%. This work created a novel recycling way of FR as a pH regulator for improving the bioconversion of alkali-treated lignocellulose. It also provided a novel clue for the valuable valorization of wastes from corn production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1386 - 1393"},"PeriodicalIF":3.1,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927674","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Ethanol Production from Corncob Assisted by Polyethylene Glycol and Conversion of Lignin-Rich Residue into Lignosulfonate and Phenolic Acids 在聚乙二醇辅助下利用玉米芯生产乙醇并将富含木质素的残留物转化为木质素磺酸盐和酚酸
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-20 DOI: 10.1007/s12155-024-10725-8
Julieta Maduzzi, Habila Yusuf Thomas, José Dário Silva Fidelis, José Valderisso Alfredo de Carvalho, Elano Costa Silva, José Daladiê Barreto da Costa Filho, José Demétrio Nery Cavalcante, Everaldo Silvino dos Santos, Domingos Fabiano de Santana Souza, Carlos Eduardo de Araújo Padilha
{"title":"Ethanol Production from Corncob Assisted by Polyethylene Glycol and Conversion of Lignin-Rich Residue into Lignosulfonate and Phenolic Acids","authors":"Julieta Maduzzi,&nbsp;Habila Yusuf Thomas,&nbsp;José Dário Silva Fidelis,&nbsp;José Valderisso Alfredo de Carvalho,&nbsp;Elano Costa Silva,&nbsp;José Daladiê Barreto da Costa Filho,&nbsp;José Demétrio Nery Cavalcante,&nbsp;Everaldo Silvino dos Santos,&nbsp;Domingos Fabiano de Santana Souza,&nbsp;Carlos Eduardo de Araújo Padilha","doi":"10.1007/s12155-024-10725-8","DOIUrl":"10.1007/s12155-024-10725-8","url":null,"abstract":"<div><p>The economic competitiveness of 2G-bioethanol technology should improve through the improvement of the sugar release and the valorization of by-products, especially lignin. Thus, an integrated scheme with corncob was developed to produce ethanol using low dosages of cellulases and value-added products from the semi-simultaneous saccharification and fermentation (SSSF) residue. Enzymatic hydrolysis and SSSF of acid pretreated corncob (&lt; 20 mesh and &gt; 20 mesh) were carried out under cellulase dosages of 5, 10, and 15 FPU/g in the absence and presence of polyethylene glycol 1500 (PEG 1500). The SSSF residue was used to obtain lignosulfonate via sulfomethylation reaction and phenolic acids via alkaline hydrolysis using 4% (w/v) sodium hydroxide and 0–5% (v/v) hydrogen peroxide. Pretreated corncob &lt; 20 mesh allowed the reduction of cellulase dosage to 5 FPU/g without compromising sugar release. The addition of PEG 1500 boosted sugar release, reaching 56.73 g/L glucose under 20% (w/v) solids. The maximum ethanol production of 31.64 g/L was obtained using 5 FPU/g cellulases, 2% (w/w) PEG 1500, and 20% (w/v) solids (gradual addition). FTIR confirmed the preparation of lignosulfonate from SSSF residue, and the surfactant showed good stabilization performance in oil/water systems (emulsification index≈30%). High yields of p-coumaric acid (8045.3 mg/100 g) and ferulic acid (1429.4 mg/100 g) were obtained in alkaline hydrolysis with 5% (v/v) hydrogen peroxide. Based on these findings, corncob is versatile and can create a biorefinery with high economic potential.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1598 - 1611"},"PeriodicalIF":3.1,"publicationDate":"2024-02-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927670","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Catalytic Upgrading of Pyrolysis Vapors from Scenedesmus sp. Microalgae towards Renewable Hydrocarbons using a Low-Cost Zeolite Synthesized from Rice Husk Ash and Diatomite Residue 利用稻壳灰和硅藻土残渣合成的低成本沸石催化升级微藻热解蒸汽,使其成为可再生碳氢化合物
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-19 DOI: 10.1007/s12155-024-10732-9
Júlio de Andrade Oliveira Marques, José Luiz Francisco Alves, Karine Fonseca Soares de Oliveira, Dulce Maria de Araújo Melo, Graco Aurelio Camara de Melo Viana, Renata Martins Braga
{"title":"Catalytic Upgrading of Pyrolysis Vapors from Scenedesmus sp. Microalgae towards Renewable Hydrocarbons using a Low-Cost Zeolite Synthesized from Rice Husk Ash and Diatomite Residue","authors":"Júlio de Andrade Oliveira Marques,&nbsp;José Luiz Francisco Alves,&nbsp;Karine Fonseca Soares de Oliveira,&nbsp;Dulce Maria de Araújo Melo,&nbsp;Graco Aurelio Camara de Melo Viana,&nbsp;Renata Martins Braga","doi":"10.1007/s12155-024-10732-9","DOIUrl":"10.1007/s12155-024-10732-9","url":null,"abstract":"<div><p>The present study aims to investigate the potential for producing an aromatic hydrocarbon-enriched fuel from <i>Scenedesmus</i> sp. microalgae using low-cost zeolite in catalytic flash pyrolysis. The methodology adopted in this study involved the use of an analytical micropyrolyzer coupled with a gas chromatograph/mass spectrometer at 500 ºC to assess the effectiveness of the low-cost HZSM − 5 catalyst in deoxygenation, denitrogenation, and aromatization activities of volatile reaction products. The HZSM − 5 catalyst was synthesized using the hydrothermal method, employing low-cost precursor materials, rice husk ash, and diatomite residue as alternative silicon and aluminum sources. The oxygenated and nitrogenated volatile products in non-catalytic flash pyrolysis constituted 51.7% and 15.3%, respectively. Catalytic upgrading of pyrolysis vapors from <i>Scenedesmus</i> sp. microalgae was demonstrated by significant deoxygenation and denitrogenation activity, reaching up to 99%, while chemical industry-relevant classes experienced increased proportions: aromatic hydrocarbons by 5.8-fold, and aliphatic hydrocarbons by 1.7-fold. Around 78% selectivity for aromatic hydrocarbons was achieved, predominantly yielding BTEX (benzene, toluene, ethylbenzene, and xylene). Another significant finding is that 89.8% of the renewable hydrocarbons produced fall within the gasoline range (C<sub>5</sub> − C<sub>12</sub>). This study conclusively indicates that the low-cost HZSM − 5 catalyst shows significant promise for producing high-quality bio-oil through the flash pyrolysis of <i>Scenedesmus</i> sp. microalgae.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1794 - 1804"},"PeriodicalIF":3.1,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139927666","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Hydrogen and Fatty Acid Production by Dark Fermentation of Sweet Sorghum Stalks as an Efficient Pre-treatment for Energy Recovery Before Their Bioconversion into Methane 甜高粱秆暗发酵产生氢气和脂肪酸,作为将其生物转化为甲烷之前回收能量的一种高效预处理方法
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-03 DOI: 10.1007/s12155-024-10724-9
Bakari Hamadou, Djomdi Djomdi, Ruben Zieba Falama, Christine Gardarin, Christelle Blavignac, Fabrice Audonnet, Cedric Delattre, Guillaume Pierre, Pascal Dubessay, Roger Djouldé Darnan, Philippe Michaud, Gwendoline Christophe
{"title":"Hydrogen and Fatty Acid Production by Dark Fermentation of Sweet Sorghum Stalks as an Efficient Pre-treatment for Energy Recovery Before Their Bioconversion into Methane","authors":"Bakari Hamadou,&nbsp;Djomdi Djomdi,&nbsp;Ruben Zieba Falama,&nbsp;Christine Gardarin,&nbsp;Christelle Blavignac,&nbsp;Fabrice Audonnet,&nbsp;Cedric Delattre,&nbsp;Guillaume Pierre,&nbsp;Pascal Dubessay,&nbsp;Roger Djouldé Darnan,&nbsp;Philippe Michaud,&nbsp;Gwendoline Christophe","doi":"10.1007/s12155-024-10724-9","DOIUrl":"10.1007/s12155-024-10724-9","url":null,"abstract":"<div><p>Hydrogen, volatile fatty acids (VFAs), and methane coproduction from sweet sorghum stems using bacterial consortium was investigated as an efficient and sustainable pre-treatment strategy to improve energy recovery. Integrated two-stage dark fermentation and methanization approach aimed to reduce fractionation, juice extraction, and pre-treatment steps to improve the efficiency and sustainability of stalks energy bioconversion. Stems biomass loading did not significantly influence hydrogen and VFAs productivities. Energy recovery yields were (7.07) and (10.01) MJ/kg dry matter (DM), respectively, for raw stem single dark fermentation (DF) and methanization processes, corresponding to 41.22% and 58.37% of raw stalk energy potential. Methanogenic potential increase of 31.9% and energy bioconversion yield of 13.21 MJ/kg DM were reached for solid residues from DF (80.75% of their energy content), suggesting that bacterial consortium efficiently pre-treated sorghum stalk fibers. Coupling process led to 88.74% net biomass energy recovery yield, corresponding respectively to 57.38% and 40.23% more than single DF and methanization. Fiber degradation ability of DF bacterial consortium significantly contributed to improve sorghum stalk energy recovery efficiency and cost-competitiveness.</p><h3>Graphical Abstract</h3>\u0000<div><figure><div><div><picture><source><img></source></picture></div></div></figure></div></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1755 - 1769"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139680036","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Biohydrogen production with a degenerated strain of Clostridium acetobutylicum ATCC824 from Eichhornia crassipes biomass 使用乙酰丁酸梭菌 ATCC824 的退化菌株从 Eichhornia crassipes 生物质中生产生物氢
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-02-03 DOI: 10.1007/s12155-024-10723-w
Paulina Aguirre, Paola German, Karlo Guerrero
{"title":"Biohydrogen production with a degenerated strain of Clostridium acetobutylicum ATCC824 from Eichhornia crassipes biomass","authors":"Paulina Aguirre,&nbsp;Paola German,&nbsp;Karlo Guerrero","doi":"10.1007/s12155-024-10723-w","DOIUrl":"10.1007/s12155-024-10723-w","url":null,"abstract":"<div><p>Degenerate strains of <i>Clostridium acetobutylicum</i> lack the ability to produce solvents and sporulate and remain in a permanent acidogenic state, allowing continuous hydrogen and organic acid production through anaerobic fermentation. <i>Eichhornia crassipes</i>, an invasive aquatic plant, emerges as a promising source of fermentable sugars for hydrogen production via anaerobic fermentation. In this study, a degenerated strain of <i>Clostridium acetobutylicum</i> was isolated and subsequently cultivated in the presence of a hydrolysate solution obtained from the alkaline pre-treatment and enzymatic hydrolysis of <i>Eichhornia crassipes</i>. The hydrolysate was mixed with a defined medium and served the dual purpose of providing essential nutrients and mitigating inhibitors, eliminating the need for an additional detoxification step. A pure defined culture medium served as a control. The extraction methods employed led to the release of low concentrations of inhibitors, reaching 0.1 g/L of furfural and 0.18 g/L of HMF. Kinetic characterization revealed that in the presence of <i>Eichhornia crassipes</i> hydrolysate, the degenerate strain exhibited lower specific growth rates ranging from 0.114 to 0.156 h<sup>−1</sup>, compared with the control medium which ranged from 0.131 to 0.179 h<sup>−1</sup>. This was accompanied by lower yields, ranging from 0.115 to 0.167 g<sub>DCW</sub>/g in the presence of hydrolysate versus 0.178 to 0.190 g<sub>DCW</sub>/g in the control medium, and diminished butyric acid production of 1.318 to 2.932 g/L in the presence of hydrolysate versus 1.749 to 3.471 g/L in control cultures. Despite reduced growth, high biohydrogen volumetric productivity was achieved, reaching 7.3 L/L·d, along with a significant yield of 2.642 mol of hydrogen per mole of glucose consumed. This represents 66.05% of the maximum stoichiometric yield calculated when acetic acid is the sole byproduct. Apparently, the presence of low concentrations of furfural and HMF released during the pre-treatment of <i>Eichhornia crassipes</i> not only negatively affects growth capacity but also diminishes butyric acid production, favoring biohydrogen production.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 3","pages":"1770 - 1783"},"PeriodicalIF":3.1,"publicationDate":"2024-02-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139677625","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Insight into the Biomass-Based Briquette Generation from Agro-Residues: Challenges, Perspectives, and Innovations 深入了解利用农业废弃物生产生物质压块:挑战、前景和创新
IF 3.1 3区 工程技术
BioEnergy Research Pub Date : 2024-01-23 DOI: 10.1007/s12155-023-10712-5
Arshad Ali, Meena Kumari,  Manisha, Sumit Tiwari, Mahesh Kumar, Deepak Chhabra, Ravinder Kumar Sahdev
{"title":"Insight into the Biomass-Based Briquette Generation from Agro-Residues: Challenges, Perspectives, and Innovations","authors":"Arshad Ali,&nbsp;Meena Kumari,&nbsp; Manisha,&nbsp;Sumit Tiwari,&nbsp;Mahesh Kumar,&nbsp;Deepak Chhabra,&nbsp;Ravinder Kumar Sahdev","doi":"10.1007/s12155-023-10712-5","DOIUrl":"10.1007/s12155-023-10712-5","url":null,"abstract":"<div><p>Turning biomass waste into briquettes using densification techniques is one of the most promising steps toward mitigating biomass waste pollution and fuel issues in developing countries. Despite the continuous growth of scientific output over the past few decades, only a limited amount of information is available in the literature on biomass briquette optimization and mathematical modeling, as well as the physiochemical characterization of biomass feedstocks and briquette operating variables. In light of this gap in the current literature, this study summarizes the current state of the art and recent advances in biomass-based briquettes generated from agro-residues as an alternative source of clean energy. The primary research method for this study is literature review and conceptual modeling. First, many densification processes, such as piston press, screw press, roller press, hydraulic press, and quality variables such as ash content, calorific value, moisture content, density, compressive strength, shatter index, etc., are thoroughly discussed and compared. Then characteristics of different biomass wastes are studied, together with process parameters, including temperature, type of binder used, particle size, and influence on densification process choice. The current evaluation concentrated on the mathematical modeling and optimization of the briquetting technology and the usefulness of briquettes in applications for heating, cooking, and energy production. Overall, this manuscript will help new researchers understand the basic methodology, classification, limitations, and future perspective of briquetting technology in the production of solid biofuels.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 2","pages":"816 - 856"},"PeriodicalIF":3.1,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139551741","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信