Jéssyca Ketterine Carvalho, Ricardo Antonio Zanella, Pitágoras Augusto Piana, Adriana Fiorini Rosado, Mairim Dahm da Silva, Rosemeire Aparecida da Silva de Lucca, Marcia Regina Fagundes-Klen, Edson Antônio da Silva, Karine Zanella, Cleide Viviane Buzanello, Álvaro Barcellos Onofrio, Maria Luiza Fernandes Rodrigues
{"title":"从多孔青霉中生产含脂肪酶的发酵固体并将其直接用作合成油酸乙酯的生物催化剂","authors":"Jéssyca Ketterine Carvalho, Ricardo Antonio Zanella, Pitágoras Augusto Piana, Adriana Fiorini Rosado, Mairim Dahm da Silva, Rosemeire Aparecida da Silva de Lucca, Marcia Regina Fagundes-Klen, Edson Antônio da Silva, Karine Zanella, Cleide Viviane Buzanello, Álvaro Barcellos Onofrio, Maria Luiza Fernandes Rodrigues","doi":"10.1007/s12155-024-10772-1","DOIUrl":null,"url":null,"abstract":"<div><p>Enzymatic catalysts, such as lipases, have been extensively studied due to their promise as an alternative to chemical catalysts. They offer advantages like biodegradability (green biotechnology) and the potential for enzyme recycling (turnover), leading to reduced operational costs. The primary objective of this study was to produce lipase from the fungus <i>Penicillium polonicum</i> through solid-state fermentation, utilizing agro-industrial waste as substrate. The aim was to apply the obtained lipase as a biological catalyst in the synthesis of ethyl oleate ester. In the lipase production process, the filamentous fungus <i>P. polonicum</i>, along with sunflower seed cake (SSC) and rice husk (RH), served as substrate and support, respectively, for solid-state fermentation (SSF). Experiments involved varying proportions of both substrate and support (0%, 25%, 50%, 75%, and 100% (RH) and 100% (SSC)). Subsequently, the impact of glycerol as an inducer (1%, 3%, and 5%, with a 25/75% SSC/RH ratio) at SSF was investigated. The obtained results revealed a catalytic activity of 29.3 U g<sup>−1</sup> under optimal conditions: 55% moisture, 25/75% SSC/RH, and at 27 °C during 96 h of fermentation. The lipase produced was employed as an enzymatic catalyst in studies involving the synthesis of ethyl oleate ester in n-heptane, utilizing experimental design 2<sup>3</sup>. Variables such as temperature, enzymatic activity, and molar ratio (alcohol/acid) were modified. The best experimental conditions for the enzymatic synthesis of ethyl oleate ester were determined to be an alcohol/acid molar ratio of 6:1, a temperature of 37 °C, and an enzymatic activity of 60 U. This resulted in 100% conversion into ester within 5 h of reaction time. The outcomes demonstrated that lipase effectively catalyzed the synthesis of ethyl oleate, a biodiesel ester, with a high yield.</p></div>","PeriodicalId":487,"journal":{"name":"BioEnergy Research","volume":"17 4","pages":"2440 - 2449"},"PeriodicalIF":3.1000,"publicationDate":"2024-05-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Production of Fermented Solid Containing Lipases from Penicillium polonicum and Its Direct Use as Biocatalyst in the Synthesis of Ethyl Oleate\",\"authors\":\"Jéssyca Ketterine Carvalho, Ricardo Antonio Zanella, Pitágoras Augusto Piana, Adriana Fiorini Rosado, Mairim Dahm da Silva, Rosemeire Aparecida da Silva de Lucca, Marcia Regina Fagundes-Klen, Edson Antônio da Silva, Karine Zanella, Cleide Viviane Buzanello, Álvaro Barcellos Onofrio, Maria Luiza Fernandes Rodrigues\",\"doi\":\"10.1007/s12155-024-10772-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Enzymatic catalysts, such as lipases, have been extensively studied due to their promise as an alternative to chemical catalysts. They offer advantages like biodegradability (green biotechnology) and the potential for enzyme recycling (turnover), leading to reduced operational costs. The primary objective of this study was to produce lipase from the fungus <i>Penicillium polonicum</i> through solid-state fermentation, utilizing agro-industrial waste as substrate. The aim was to apply the obtained lipase as a biological catalyst in the synthesis of ethyl oleate ester. In the lipase production process, the filamentous fungus <i>P. polonicum</i>, along with sunflower seed cake (SSC) and rice husk (RH), served as substrate and support, respectively, for solid-state fermentation (SSF). Experiments involved varying proportions of both substrate and support (0%, 25%, 50%, 75%, and 100% (RH) and 100% (SSC)). Subsequently, the impact of glycerol as an inducer (1%, 3%, and 5%, with a 25/75% SSC/RH ratio) at SSF was investigated. The obtained results revealed a catalytic activity of 29.3 U g<sup>−1</sup> under optimal conditions: 55% moisture, 25/75% SSC/RH, and at 27 °C during 96 h of fermentation. The lipase produced was employed as an enzymatic catalyst in studies involving the synthesis of ethyl oleate ester in n-heptane, utilizing experimental design 2<sup>3</sup>. Variables such as temperature, enzymatic activity, and molar ratio (alcohol/acid) were modified. The best experimental conditions for the enzymatic synthesis of ethyl oleate ester were determined to be an alcohol/acid molar ratio of 6:1, a temperature of 37 °C, and an enzymatic activity of 60 U. This resulted in 100% conversion into ester within 5 h of reaction time. The outcomes demonstrated that lipase effectively catalyzed the synthesis of ethyl oleate, a biodiesel ester, with a high yield.</p></div>\",\"PeriodicalId\":487,\"journal\":{\"name\":\"BioEnergy Research\",\"volume\":\"17 4\",\"pages\":\"2440 - 2449\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-05-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"BioEnergy Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s12155-024-10772-1\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"BioEnergy Research","FirstCategoryId":"5","ListUrlMain":"https://link.springer.com/article/10.1007/s12155-024-10772-1","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Production of Fermented Solid Containing Lipases from Penicillium polonicum and Its Direct Use as Biocatalyst in the Synthesis of Ethyl Oleate
Enzymatic catalysts, such as lipases, have been extensively studied due to their promise as an alternative to chemical catalysts. They offer advantages like biodegradability (green biotechnology) and the potential for enzyme recycling (turnover), leading to reduced operational costs. The primary objective of this study was to produce lipase from the fungus Penicillium polonicum through solid-state fermentation, utilizing agro-industrial waste as substrate. The aim was to apply the obtained lipase as a biological catalyst in the synthesis of ethyl oleate ester. In the lipase production process, the filamentous fungus P. polonicum, along with sunflower seed cake (SSC) and rice husk (RH), served as substrate and support, respectively, for solid-state fermentation (SSF). Experiments involved varying proportions of both substrate and support (0%, 25%, 50%, 75%, and 100% (RH) and 100% (SSC)). Subsequently, the impact of glycerol as an inducer (1%, 3%, and 5%, with a 25/75% SSC/RH ratio) at SSF was investigated. The obtained results revealed a catalytic activity of 29.3 U g−1 under optimal conditions: 55% moisture, 25/75% SSC/RH, and at 27 °C during 96 h of fermentation. The lipase produced was employed as an enzymatic catalyst in studies involving the synthesis of ethyl oleate ester in n-heptane, utilizing experimental design 23. Variables such as temperature, enzymatic activity, and molar ratio (alcohol/acid) were modified. The best experimental conditions for the enzymatic synthesis of ethyl oleate ester were determined to be an alcohol/acid molar ratio of 6:1, a temperature of 37 °C, and an enzymatic activity of 60 U. This resulted in 100% conversion into ester within 5 h of reaction time. The outcomes demonstrated that lipase effectively catalyzed the synthesis of ethyl oleate, a biodiesel ester, with a high yield.
期刊介绍:
BioEnergy Research fills a void in the rapidly growing area of feedstock biology research related to biomass, biofuels, and bioenergy. The journal publishes a wide range of articles, including peer-reviewed scientific research, reviews, perspectives and commentary, industry news, and government policy updates. Its coverage brings together a uniquely broad combination of disciplines with a common focus on feedstock biology and science, related to biomass, biofeedstock, and bioenergy production.