Spatial Statistics最新文献

筛选
英文 中文
Bayesian analysis and variable selection for spatial count data with an application to Rio de Janeiro gun violence
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-27 DOI: 10.1016/j.spasta.2025.100890
Guilherme Ludwig , Yuan Wang , Tingjin Chu , Haonan Wang , Jun Zhu
{"title":"Bayesian analysis and variable selection for spatial count data with an application to Rio de Janeiro gun violence","authors":"Guilherme Ludwig ,&nbsp;Yuan Wang ,&nbsp;Tingjin Chu ,&nbsp;Haonan Wang ,&nbsp;Jun Zhu","doi":"10.1016/j.spasta.2025.100890","DOIUrl":"10.1016/j.spasta.2025.100890","url":null,"abstract":"<div><div>Statistical analysis has been successfully applied to crime data for identification of crime hot spots and prediction of future crimes. In this paper, our main objective is to identify key factors for gun violence in Rio de Janeiro and study the relationship between these key factors and the number of reported events. We use a Bayesian hierarchical stochastic Poisson regression model for spatial counts, which enables us to address the over-dispersed count data and to handle the spatial correlation. Moreover, we propose a variable selection method for key factor identification based on the spike-and-slab prior distribution for the regression coefficients. A new Gibbs sampler is developed for sampling from the posterior distributions with the help of augmentation of Pólya-Gamma auxiliary variables. Simulation studies are used to demonstrate the performance of our proposed approach. Our analysis of the gun violence data in Rio de Janeiro reveals the relationship between violence events and socio-demographic covariates as well as an interpretable spatial random effect that accounts for unmeasured covariate information.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100890"},"PeriodicalIF":2.1,"publicationDate":"2025-02-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519049","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Derivative-based spatial mediation with INLA-SPDE
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-24 DOI: 10.1016/j.spasta.2025.100885
Claudio Rubino , Chiara Di Maria , Antonino Abbruzzo , Gioacchino Bono , Germana Garofalo , Giacomo Milisenda , Giada Adelfio
{"title":"Derivative-based spatial mediation with INLA-SPDE","authors":"Claudio Rubino ,&nbsp;Chiara Di Maria ,&nbsp;Antonino Abbruzzo ,&nbsp;Gioacchino Bono ,&nbsp;Germana Garofalo ,&nbsp;Giacomo Milisenda ,&nbsp;Giada Adelfio","doi":"10.1016/j.spasta.2025.100885","DOIUrl":"10.1016/j.spasta.2025.100885","url":null,"abstract":"<div><div>In many applied fields, it may be of interest to evaluate mediational mechanisms occurring in spatial domains. The approaches proposed so far in the literature to address this issue deal with areal data and often consider linear models. In this paper, we propose an approach to assess mediation in the presence of geostatistical data by combining the integrated nested Laplace approximation (INLA) with a derivative-based approach for mediation analysis, which allows one to estimate indirect effects also in the case of nonlinear models. We investigate the effect of ignoring spatial processes in the mediator and the outcome models through a simulation study, focusing also on the case of correlated processes. To show the usefulness of our approach, we also provided an ecological application.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100885"},"PeriodicalIF":2.1,"publicationDate":"2025-02-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143488347","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustered factor analysis for multivariate spatial data
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-22 DOI: 10.1016/j.spasta.2025.100889
Yanxiu Jin , Tomoya Wakayama , Renhe Jiang , Shonosuke Sugasawa
{"title":"Clustered factor analysis for multivariate spatial data","authors":"Yanxiu Jin ,&nbsp;Tomoya Wakayama ,&nbsp;Renhe Jiang ,&nbsp;Shonosuke Sugasawa","doi":"10.1016/j.spasta.2025.100889","DOIUrl":"10.1016/j.spasta.2025.100889","url":null,"abstract":"<div><div>Factor analysis has been extensively used to reveal the dependence structures among multivariate variables, offering valuable insight in various fields. However, it cannot incorporate the spatial heterogeneity that is typically present in spatial data. To address this issue, we introduce an effective method specifically designed to discover the potential dependence structures in multivariate spatial data. Our approach assumes that spatial locations can be approximately divided into a finite number of clusters, with locations within the same cluster sharing similar dependence structures. By leveraging an iterative algorithm that combines spatial clustering with factor analysis, we simultaneously detect spatial clusters and estimate a unique factor model for each cluster. The proposed method is evaluated through comprehensive simulation studies, demonstrating its flexibility. In addition, we apply the proposed method to a dataset of railway station attributes in the Tokyo metropolitan area, highlighting its practical applicability and effectiveness in uncovering complex spatial dependencies.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100889"},"PeriodicalIF":2.1,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508562","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Hotelling spatial scan statistic for functional data: Application to economic and climate data
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-22 DOI: 10.1016/j.spasta.2025.100888
Zaineb Smida , Thibault Laurent , Lionel Cucala
{"title":"A Hotelling spatial scan statistic for functional data: Application to economic and climate data","authors":"Zaineb Smida ,&nbsp;Thibault Laurent ,&nbsp;Lionel Cucala","doi":"10.1016/j.spasta.2025.100888","DOIUrl":"10.1016/j.spasta.2025.100888","url":null,"abstract":"<div><div>A scan method for functional data indexed in space has been developed. The scan statistic is derived from the Hotelling test statistic for functional data, extending the univariate and multivariate Gaussian spatial scan statistics. This method consistently outperforms existing techniques in detecting and locating spatial clusters, as demonstrated through simulations. It has been applied to two types of real data: economic data in order to identify spatial clusters of abnormal unemployment rates in Spain and climatic data in order to detect unusual climate change patterns in Great Britain, Nigeria, Pakistan, and Venezuela.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100888"},"PeriodicalIF":2.1,"publicationDate":"2025-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143508312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Statistical inference of partially linear time-varying coefficients spatial autoregressive panel data model
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-18 DOI: 10.1016/j.spasta.2025.100887
Lingling Tian , Chuanhua Wei , Mixia Wu
{"title":"Statistical inference of partially linear time-varying coefficients spatial autoregressive panel data model","authors":"Lingling Tian ,&nbsp;Chuanhua Wei ,&nbsp;Mixia Wu","doi":"10.1016/j.spasta.2025.100887","DOIUrl":"10.1016/j.spasta.2025.100887","url":null,"abstract":"<div><div>This paper investigates a partially linear spatial autoregressive panel data model that incorporates fixed effects, constant and time-varying regression coefficients, and a time-varying spatial lag coefficient. A two-stage least squares estimation method based on profile local linear dummy variables (2SLS-PLLDV) is proposed to estimate both constant and time-varying coefficients without the need for first differencing. The asymptotic properties of the estimator are derived under certain conditions. Furthermore, a residual-based goodness-of-fit test is constructed for the model, and a residual-based bootstrap method is used to obtain p-values. Simulation studies show the good performance of the proposed method in various scenarios. For illustration, the carbon emission data from Chinese provinces and the public capital productivity data from the United States are analyzed.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100887"},"PeriodicalIF":2.1,"publicationDate":"2025-02-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143445043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A term structure geostatistical model with correlated residuals: A comparative analysis 具有相关残差的期限结构地质统计模型:比较分析
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-17 DOI: 10.1016/j.spasta.2025.100886
Antonella Congedi, Sandra De Iaco, Donato Posa
{"title":"A term structure geostatistical model with correlated residuals: A comparative analysis","authors":"Antonella Congedi,&nbsp;Sandra De Iaco,&nbsp;Donato Posa","doi":"10.1016/j.spasta.2025.100886","DOIUrl":"10.1016/j.spasta.2025.100886","url":null,"abstract":"<div><div>The growth of financial markets and the emerging derivative instruments require the development of advanced techniques for forecasting the term structure of interest rates. In this context, two significant dimensions, i.e. maturity and time, need to be jointly considered in the modeling procedure. In the literature, the Nelson–Siegel model is commonly used to explain the dependence of the interest rates on maturity and time. However, it cannot be excluded that the residuals obtained from Nelson–Siegel estimates are still correlated. At this purpose, a geostatistical approach is adopted and an innovative modeling solution is provided. Indeed, differently from the existing contributions, this paper proposes a dynamic model for predicting the term structure of spot interest rates, where the joint evolution with respect to time and maturity is considered for both the deterministic and the stochastic parts of the model. The relevance as well as the potentiality of the geostatistical modeling techniques extended to treat observations not strictly referred to a geographic system, has been properly underlined. For comparative reasons, different hypotheses on the random field, utilized to describe the interest rates and its trend component, are also assumed and a comparison among predictive performance of alternative models is discussed.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"67 ","pages":"Article 100886"},"PeriodicalIF":2.1,"publicationDate":"2025-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143519048","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Bayesian geographically weighted regression using Fused Lasso prior
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-06 DOI: 10.1016/j.spasta.2025.100884
Toshiki Sakai , Jun Tsuchida , Hiroshi Yadohisa
{"title":"Bayesian geographically weighted regression using Fused Lasso prior","authors":"Toshiki Sakai ,&nbsp;Jun Tsuchida ,&nbsp;Hiroshi Yadohisa","doi":"10.1016/j.spasta.2025.100884","DOIUrl":"10.1016/j.spasta.2025.100884","url":null,"abstract":"<div><div>A main purpose of spatial data analysis is to predict the objective variable for the unobserved locations. Although Geographically Weighted Regression (GWR) is often used for this purpose, estimation instability proves to be an issue. To address this issue, Bayesian Geographically Weighted Regression (BGWR) has been proposed. In BGWR, by setting the same prior distribution for all locations, the coefficients’ estimation stability is improved. However, when observation locations’ density is spatially different, these methods do not sufficiently consider the similarity of coefficients among locations. Moreover, the prediction accuracy of these methods becomes worse. To solve these issues, we propose Bayesian Geographically Weighted Sparse Regression (BGWSR) that uses Bayesian Fused Lasso for the prior distribution of the BGWR coefficients. Constraining the parameters to have the same values at adjacent locations is expected to improve the prediction accuracy at locations with a low number of adjacent locations. Furthermore, from the predictive distribution, it is also possible to evaluate the uncertainty of the predicted value of the objective variable. By examining numerical studies, we confirmed that BGWSR has better prediction performance than the existing methods (GWR and BGWR) when the density of observation locations is spatial difference. Finally, the BGWSR is applied to land price data in Tokyo. Thus, the results suggest that BGWSR has better prediction performance and smaller uncertainty than existing methods.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100884"},"PeriodicalIF":2.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143387115","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial deep convolutional neural networks
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-02-06 DOI: 10.1016/j.spasta.2025.100883
Qi Wang, Paul A. Parker, Robert Lund
{"title":"Spatial deep convolutional neural networks","authors":"Qi Wang,&nbsp;Paul A. Parker,&nbsp;Robert Lund","doi":"10.1016/j.spasta.2025.100883","DOIUrl":"10.1016/j.spasta.2025.100883","url":null,"abstract":"<div><div>Spatial prediction problems often use Gaussian process models, which can be computationally burdensome in high dimensions. Specification of an appropriate covariance function for the model can be challenging when complex non-stationarities exist. Recent work has shown that pre-computed spatial basis functions and a feed-forward neural network can capture complex spatial dependence structures while remaining computationally efficient. This paper builds on this literature by tailoring spatial basis functions for use in convolutional neural networks. Through both simulated and real data, we demonstrate that this approach yields more accurate spatial predictions than existing methods. Uncertainty quantification is also considered.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100883"},"PeriodicalIF":2.1,"publicationDate":"2025-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143402602","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Clustering of compound events based on multivariate comonotonicity
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-01-27 DOI: 10.1016/j.spasta.2025.100881
Fabrizio Durante , Sebastian Fuchs , Roberta Pappadà
{"title":"Clustering of compound events based on multivariate comonotonicity","authors":"Fabrizio Durante ,&nbsp;Sebastian Fuchs ,&nbsp;Roberta Pappadà","doi":"10.1016/j.spasta.2025.100881","DOIUrl":"10.1016/j.spasta.2025.100881","url":null,"abstract":"<div><div>Driven by the goal of generating risk maps for flood events—characterized by various physical variables such as peak flow and volume, and measured at specific geographic locations—this work proposes several dissimilarity functions for use in unsupervised learning problems and, specifically, in clustering algorithms. These dissimilarities are rank-based, relying on the dependence occurring among the random variables involved, and assign the smallest values to pairs of subsets that are <span><math><mi>π</mi></math></span>-comonotonic. This concept is less restrictive than classical comonotonicity but, in the multivariate case, can offer a more intuitive understanding of compound phenomena.</div><div>An application of these measures is presented through the analysis of flood risks using data from the Po river basin, with results compared to similar studies found in the literature.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100881"},"PeriodicalIF":2.1,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143151696","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Measuring unit relevance and stability in hierarchical spatio-temporal clustering
IF 2.1 2区 数学
Spatial Statistics Pub Date : 2025-01-13 DOI: 10.1016/j.spasta.2025.100880
Roy Cerqueti , Raffaele Mattera
{"title":"Measuring unit relevance and stability in hierarchical spatio-temporal clustering","authors":"Roy Cerqueti ,&nbsp;Raffaele Mattera","doi":"10.1016/j.spasta.2025.100880","DOIUrl":"10.1016/j.spasta.2025.100880","url":null,"abstract":"<div><div>Understanding the significance of individual data points within clustering structures is critical to effective data analysis. Traditional stability methods, while valuable, often overlook the nuanced impact of individual units, particularly in spatial contexts. In this paper, we explore the concept of unit relevance in clustering analysis, emphasizing its importance in capturing the spatio-temporal nature of the clustering problem. We propose a simple measure of unit relevance, the Unit Relevance Index (URI), and define an overall measure of clustering stability based on the aggregation of computed URIs. Considering two experiments on real datasets with geo-referenced time series, we find that the use of spatial constraints in the clustering task yields more stable results. Therefore, the inclusion of the spatial dimension can be seen as a way to stabilize the clustering.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"66 ","pages":"Article 100880"},"PeriodicalIF":2.1,"publicationDate":"2025-01-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143151695","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信