空间自回归面板数据模型的模型平均

IF 2.5 2区 数学 Q3 GEOSCIENCES, MULTIDISCIPLINARY
Aibing Ji, Jingxuan Li, Qingqing Li
{"title":"空间自回归面板数据模型的模型平均","authors":"Aibing Ji,&nbsp;Jingxuan Li,&nbsp;Qingqing Li","doi":"10.1016/j.spasta.2025.100931","DOIUrl":null,"url":null,"abstract":"<div><div>The spatial autoregressive panel data models are widely employed in regional economics to capture spatial dependencies, but conventional specifications rely on a single spatial weight matrix, heightening the risk of model misspecification. Current research lacks systematic model averaging methods for integrating multiple weight matrices and addressing spatial effect uncertainty. This study proposes a novel model averaging framework for spatial autoregressive panel data models with fixed effects, extending model averaging methodology to the spatial panel context and enabling flexible combinations of multiple weight matrices for both dependent variables and error terms. An adaptive Mallows-type criterion is developed, dynamically adjusting to the presence or absence of spatial effects, with its asymptotic optimality established. Monte Carlo simulations confirm robustness across scenarios with no, single, or mixed spatial dependencies. An empirical application to Chinese provincial housing prices identifies economic adjacency as the key spatial dependence driver, validating the method’s predictive accuracy and policy utility for spatiotemporal data analysis.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"70 ","pages":"Article 100931"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Model averaging for spatial autoregressive panel data models\",\"authors\":\"Aibing Ji,&nbsp;Jingxuan Li,&nbsp;Qingqing Li\",\"doi\":\"10.1016/j.spasta.2025.100931\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><div>The spatial autoregressive panel data models are widely employed in regional economics to capture spatial dependencies, but conventional specifications rely on a single spatial weight matrix, heightening the risk of model misspecification. Current research lacks systematic model averaging methods for integrating multiple weight matrices and addressing spatial effect uncertainty. This study proposes a novel model averaging framework for spatial autoregressive panel data models with fixed effects, extending model averaging methodology to the spatial panel context and enabling flexible combinations of multiple weight matrices for both dependent variables and error terms. An adaptive Mallows-type criterion is developed, dynamically adjusting to the presence or absence of spatial effects, with its asymptotic optimality established. Monte Carlo simulations confirm robustness across scenarios with no, single, or mixed spatial dependencies. An empirical application to Chinese provincial housing prices identifies economic adjacency as the key spatial dependence driver, validating the method’s predictive accuracy and policy utility for spatiotemporal data analysis.</div></div>\",\"PeriodicalId\":48771,\"journal\":{\"name\":\"Spatial Statistics\",\"volume\":\"70 \",\"pages\":\"Article 100931\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2025-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Spatial Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2211675325000533\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000533","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

空间自回归面板数据模型在区域经济学中被广泛应用于捕获空间依赖关系,但传统的规范依赖于单一的空间权重矩阵,增加了模型错误规范的风险。目前的研究缺乏系统的模型平均方法来积分多个权重矩阵和处理空间效应的不确定性。本研究为具有固定效应的空间自回归面板数据模型提出了一种新的模型平均框架,将模型平均方法扩展到空间面板环境,并实现了因变量和误差项的多个权重矩阵的灵活组合。提出了一种自适应mallows型准则,根据空间效应的存在或不存在进行动态调整,并建立了其渐近最优性。蒙特卡罗模拟证实了在没有、单一或混合空间依赖性的情况下的鲁棒性。通过对中国省级房价的实证分析,发现经济邻接性是主要的空间依赖驱动因素,验证了该方法在时空数据分析中的预测准确性和政策实用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Model averaging for spatial autoregressive panel data models
The spatial autoregressive panel data models are widely employed in regional economics to capture spatial dependencies, but conventional specifications rely on a single spatial weight matrix, heightening the risk of model misspecification. Current research lacks systematic model averaging methods for integrating multiple weight matrices and addressing spatial effect uncertainty. This study proposes a novel model averaging framework for spatial autoregressive panel data models with fixed effects, extending model averaging methodology to the spatial panel context and enabling flexible combinations of multiple weight matrices for both dependent variables and error terms. An adaptive Mallows-type criterion is developed, dynamically adjusting to the presence or absence of spatial effects, with its asymptotic optimality established. Monte Carlo simulations confirm robustness across scenarios with no, single, or mixed spatial dependencies. An empirical application to Chinese provincial housing prices identifies economic adjacency as the key spatial dependence driver, validating the method’s predictive accuracy and policy utility for spatiotemporal data analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Spatial Statistics
Spatial Statistics GEOSCIENCES, MULTIDISCIPLINARY-MATHEMATICS, INTERDISCIPLINARY APPLICATIONS
CiteScore
4.00
自引率
21.70%
发文量
89
审稿时长
55 days
期刊介绍: Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication. Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信