{"title":"Specifying spatial effects in panel data: Locally robust vs. conditional tests","authors":"Giovanni Millo","doi":"10.1016/j.spasta.2025.100934","DOIUrl":null,"url":null,"abstract":"<div><div>We address the issue of specifying a spatial lag vs. spatial error process in spatial panel models. The popular locally robust Lagrange multiplier (RLM) tests for spatial lag vs. error are compared to optimal alternatives based on maximum likelihood estimation: Wald and likelihood ratio (LR) tests requiring estimation of the full encompassing model, and conditional Lagrange multiplier (CLM) tests drawing on the reduced specification. Monte Carlo simulations are performed in a typical spatial panel context. Individual effects are successfully eliminated through the forward orthogonal deviations transformation, making the RLM suitable for panel data. Nevertheless, the statistical properties of Wald and LR are superior to those of the RLM. The CLM also dominates the RLM, as long as the sample is at least of moderate size. The RLM are computationally very convenient, but ML-based tests are feasible in most usage cases on mainstream hardware.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"70 ","pages":"Article 100934"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000569","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We address the issue of specifying a spatial lag vs. spatial error process in spatial panel models. The popular locally robust Lagrange multiplier (RLM) tests for spatial lag vs. error are compared to optimal alternatives based on maximum likelihood estimation: Wald and likelihood ratio (LR) tests requiring estimation of the full encompassing model, and conditional Lagrange multiplier (CLM) tests drawing on the reduced specification. Monte Carlo simulations are performed in a typical spatial panel context. Individual effects are successfully eliminated through the forward orthogonal deviations transformation, making the RLM suitable for panel data. Nevertheless, the statistical properties of Wald and LR are superior to those of the RLM. The CLM also dominates the RLM, as long as the sample is at least of moderate size. The RLM are computationally very convenient, but ML-based tests are feasible in most usage cases on mainstream hardware.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.