{"title":"Spatial and spatio-temporal cluster detection using stacking","authors":"Maria E. Kamenetsky , Jun Zhu , Ronald E. Gangnon","doi":"10.1016/j.spasta.2025.100933","DOIUrl":null,"url":null,"abstract":"<div><div>Patterns in disease across space and time are important to epidemiologists and health professionals because they may indicate underlying elevated disease risk. In some cases, elevated risk may be driven by environmental exposures, infectious diseases or other factors where timely public health interventions are important. The spatial and spatio-temporal scan statistics identify a single most likely cluster or equivalently select a single correct model. We instead consider an ensemble of single cluster models. We use stacking, a model-averaging technique, to combine relative risk estimates from all of the single cluster models into a sequence of meta-models indexed by the effective number of parameters/clusters. The number of parameters/spatio-temporal clusters is chosen using information criteria. A simulation study is conducted to demonstrate the statistical properties of the stacking method. The method is illustrated using a dataset of female breast cancer incidence data at the municipality level in Japan.</div></div>","PeriodicalId":48771,"journal":{"name":"Spatial Statistics","volume":"70 ","pages":"Article 100933"},"PeriodicalIF":2.5000,"publicationDate":"2025-09-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Spatial Statistics","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2211675325000557","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
Patterns in disease across space and time are important to epidemiologists and health professionals because they may indicate underlying elevated disease risk. In some cases, elevated risk may be driven by environmental exposures, infectious diseases or other factors where timely public health interventions are important. The spatial and spatio-temporal scan statistics identify a single most likely cluster or equivalently select a single correct model. We instead consider an ensemble of single cluster models. We use stacking, a model-averaging technique, to combine relative risk estimates from all of the single cluster models into a sequence of meta-models indexed by the effective number of parameters/clusters. The number of parameters/spatio-temporal clusters is chosen using information criteria. A simulation study is conducted to demonstrate the statistical properties of the stacking method. The method is illustrated using a dataset of female breast cancer incidence data at the municipality level in Japan.
期刊介绍:
Spatial Statistics publishes articles on the theory and application of spatial and spatio-temporal statistics. It favours manuscripts that present theory generated by new applications, or in which new theory is applied to an important practical case. A purely theoretical study will only rarely be accepted. Pure case studies without methodological development are not acceptable for publication.
Spatial statistics concerns the quantitative analysis of spatial and spatio-temporal data, including their statistical dependencies, accuracy and uncertainties. Methodology for spatial statistics is typically found in probability theory, stochastic modelling and mathematical statistics as well as in information science. Spatial statistics is used in mapping, assessing spatial data quality, sampling design optimisation, modelling of dependence structures, and drawing of valid inference from a limited set of spatio-temporal data.