Earth Surface Dynamics最新文献

筛选
英文 中文
On the use of convolutional deep learning to predict shoreline change 关于使用卷积深度学习来预测海岸线变化
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-11-13 DOI: 10.5194/esurf-11-1145-2023
Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, Jennifer Montaño
{"title":"On the use of convolutional deep learning to predict shoreline change","authors":"Eduardo Gomez-de la Peña, Giovanni Coco, Colin Whittaker, Jennifer Montaño","doi":"10.5194/esurf-11-1145-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1145-2023","url":null,"abstract":"Abstract. The process of shoreline change is inherently complex, and reliable predictions of shoreline position remain a key challenge in coastal research. Predicting shoreline evolution could potentially benefit from deep learning (DL), which is a recently developed and widely successful data-driven methodology. However, so far its implementation for shoreline time series data has been limited. The aim of this contribution is to investigate the potential of DL algorithms to predict interannual shoreline position derived from camera system observations at a New Zealand study site. We investigate the application of convolutional neural networks (CNNs) and hybrid CNN-LSTM (Long Short-Term Memory) networks. We compare our results with two established models: a shoreline equilibrium model and a model that addresses timescales in shoreline drivers. Using a systematic search and different measures of fitness, we found DL models that outperformed the reference models when simulating the variability and distribution of the observations. Overall, these results indicate that DL models have potential to improve accuracy and reliability over current models.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136346296","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Steady-state forms of channel profiles shaped by debris flow and fluvial processes 泥石流和河流作用形成的河道剖面的稳态形式
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-11-09 DOI: 10.5194/esurf-11-1117-2023
Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, Katherine R. Barnhart
{"title":"Steady-state forms of channel profiles shaped by debris flow and fluvial processes","authors":"Luke A. McGuire, Scott W. McCoy, Odin Marc, William Struble, Katherine R. Barnhart","doi":"10.5194/esurf-11-1117-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1117-2023","url":null,"abstract":"Abstract. Debris flows regularly traverse bedrock channels that dissect steep landscapes, but our understanding of bedrock erosion by debris flows and their impact on steepland morphology is still rudimentary. Quantitative models of steep bedrock channel networks are based on geomorphic transport laws designed to represent erosion by water-dominated flows. To quantify the impact of debris flow erosion on steep channel network form, it is first necessary to develop methods to estimate spatial variations in bulk debris flow properties (e.g., flow depth, velocity) throughout the channel network that can be integrated into landscape evolution models. Here, we propose and evaluate two methods to estimate spatial variations in bulk debris flow properties along the length of a channel profile. We incorporate both methods into a model designed to simulate the evolution of longitudinal channel profiles that evolve in response to debris flow and fluvial processes. To explore this model framework, we propose a general family of debris flow erosion laws where erosion rate is a function of debris flow depth and channel slope. Model results indicate that erosion by debris flows can explain the occurrence of a scaling break in the slope–area curve at low-drainage areas and that upper-network channel morphology may be useful for inferring catchment-averaged erosion rates in quasi-steady landscapes. Validating specific forms of a debris flow incision law, however, would require more detailed model–data comparisons in specific landscapes where input parameters and channel morphometry can be better constrained. Results improve our ability to interpret topographic signals within steep channel networks and identify observational targets critical for constraining a debris flow incision law.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135242441","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
On the use of packing models for the prediction of fluvial sediment porosity 充填模型在河流沉积孔隙度预测中的应用
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-11-02 DOI: 10.5194/esurf-11-1097-2023
Christoph Rettinger, Mina Tabesh, Ulrich Rüde, Stefan Vollmer, Roy M. Frings
{"title":"On the use of packing models for the prediction of fluvial sediment porosity","authors":"Christoph Rettinger, Mina Tabesh, Ulrich Rüde, Stefan Vollmer, Roy M. Frings","doi":"10.5194/esurf-11-1097-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1097-2023","url":null,"abstract":"Abstract. Obtaining accurate porosity information of fluvial sediment deposits is helpful and desirable for many tasks of river engineers. Besides direct measurements of single samples and empirical formulas specialized for specific cases, packing models promise efficient predictions due to their theoretical and extensible foundation. The objective of this work is thus to investigate the usability of three such models in order to obtain a suitable porosity prediction method for the challenging case of fluvial sediment packing. There, the complexity originates from wide continuous size distributions, from silt to gravel, and different grain shapes. We use data obtained from extensive numerical packing simulations to determine the required model parameters and to verify the models' accuracy for moderate size ratios. This study reveals systematic deficits in one of the models, which can be attributed to the absence of a built-in mixture packing model. By combining these findings with data from laboratory measurements and extending the model to include cohesive effects, we exemplify that reasonable porosity predictions can be obtained with the Compressible Packing Model for the Rhine river in Germany. Through an additional comparison with data from French rivers, guidelines for a successful prediction in cases with limited prior knowledge of the model parameters are developed. Future model enhancements of the packing models directly, and by incorporating more effects that are known to influence porosity, are expected to improve the predictive performance.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135973370","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Marsh-induced backwater: the influence of non-fluvial sedimentation on a delta's channel morphology and kinematics 沼泽引起的回水:非河流沉积对三角洲河道形态和运动学的影响
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-11-01 DOI: 10.5194/esurf-11-1035-2023
Kelly M. Sanks, John B. Shaw, Samuel M. Zapp, José Silvestre, Ripul Dutt, Kyle M. Straub
{"title":"Marsh-induced backwater: the influence of non-fluvial sedimentation on a delta's channel morphology and kinematics","authors":"Kelly M. Sanks, John B. Shaw, Samuel M. Zapp, José Silvestre, Ripul Dutt, Kyle M. Straub","doi":"10.5194/esurf-11-1035-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1035-2023","url":null,"abstract":"Abstract. We investigate the interaction of fluvial and non-fluvial sedimentation on the channel morphology and kinematics of an experimental river delta. We compare two deltas: one that evolved with a proxy for non-fluvial (“marsh”) sedimentation (treatment experiment) and one that evolved without the proxy (control). We show that the addition of the non-fluvial sediment proxy alters the delta's channel morphology and kinematics. Notably, the flow outside the channels is significantly reduced in the treatment experiment, and the channels are deeper (as a function of radial distance from the source) and longer. We also find that both the control and treatment channels narrow as they approach the shoreline, though the narrowing is more pronounced in the control compared to the treatment. Interestingly, the channel beds in the treatment experiment often exist below sea level in the terrestrial portion of the delta top, creating a ∼ 0.7 m reach of steady, non-uniform backwater flow. However, in the control experiment, the channel beds generally exist at or above relative sea level, creating channel movement resembling morphodynamic backwater kinematics and topographic flow expansions. Differences between channel and far-field aggradation produce a longer channel in-filling timescale for the treatment compared to the control, suggesting that the channel avulsions triggered by a peak in channel sedimentation occur less frequently in the treatment experiment. Despite this difference, the basin-wide timescale of lateral channel mobility remains similar. Ultimately, non-fluvial sedimentation on the delta top plays a key role in the channel morphology and kinematics of an experimental river delta, producing channels which are more analogous to channels in global river deltas and which cannot be produced solely by increasing cohesion in an experimental river delta.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272354","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Automated riverbed composition analysis using deep learning on underwater images 在水下图像上使用深度学习的自动河床成分分析
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-11-01 DOI: 10.5194/esurf-11-1061-2023
Alexander A. Ermilov, Gergely Benkő, Sándor Baranya
{"title":"Automated riverbed composition analysis using deep learning on underwater images","authors":"Alexander A. Ermilov, Gergely Benkő, Sándor Baranya","doi":"10.5194/esurf-11-1061-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1061-2023","url":null,"abstract":"Abstract. The sediment of alluvial riverbeds plays a significant role in river systems both in engineering and natural processes. However, the sediment composition can show high spatial and temporal heterogeneity, even on river-reach scale, making it difficult to representatively sample and assess. Conventional sampling methods are inadequate and time-consuming for effectively capturing the variability of bed surface texture in these situations. In this study, we overcome this issue by adopting an image-based deep-learning (DL) algorithm. The algorithm was trained to recognise the main sediment classes in videos that were taken along cross sections underwater in the Danube. A total of 27 riverbed samples were collected and analysed for validation. The introduced DL-based method is fast, i.e. the videos of 300–400 m long sections can be analysed within minutes with continuous spatial sampling distribution (i.e. the whole riverbed along the path is mapped with images in ca. 0.3–1 m2 overlapping windows). The quality of the trained algorithm was evaluated (i) mathematically by dividing the annotated images into test and validation sets and also via (ii) intercomparison with other direct (sieving of physical samples) and indirect sampling methods (wavelet-based image processing of the riverbed images), focusing on the percentages of the detected sediment fractions. For the final evaluation, the sieving analysis of the collected physical samples were considered the ground truth. After correcting for samples affected by bed armouring, comparison of the DL approach with 14 physical samples yielded a mean classification error of 4.5 %. In addition, based upon the visual evaluation of the footage, the spatial trend in the fraction changes was also well captured along the cross sections. Suggestions for performing proper field measurements are also given; furthermore, possibilities for combining the algorithm with other techniques are highlighted, briefly showcasing the multi-purpose nature of underwater videos for hydromorphological assessment.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135272589","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Spatial and temporal variations in rockwall erosion rates derived from cosmogenic 10Be in medial moraines at five valley glaciers around Pigne d'Arolla, Switzerland 瑞士Pigne d'Arolla附近5个山谷冰川中部冰碛岩壁侵蚀速率的时空变化
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-10-30 DOI: 10.5194/esurf-11-1013-2023
Katharina Wetterauer, Dirk Scherler
{"title":"Spatial and temporal variations in rockwall erosion rates derived from cosmogenic <sup>10</sup>Be in medial moraines at five valley glaciers around Pigne d'Arolla, Switzerland","authors":"Katharina Wetterauer, Dirk Scherler","doi":"10.5194/esurf-11-1013-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1013-2023","url":null,"abstract":"Abstract. Rockwall erosion in high-alpine glacial environments varies both temporally and spatially. Where rockwalls flank glaciers, changes in debris supply and supraglacial cover will modify ice ablation. Yet, quantifying spatiotemporal patterns in erosion across deglaciating rockwalls is not trivial. At five nearby valley glaciers around Pigne d'Arolla in Switzerland, we derived apparent rockwall erosion rates using 10Be cosmogenic nuclide concentrations ([10Be]) in medial moraine debris. Systematic downglacier sampling of six medial moraines that receive debris from rockwalls with differing orientation, slope, and deglaciation histories enabled us to assess rockwall erosion through time and to investigate how distinct spatial source rockwall morphology may express itself in medial moraine [10Be] records. Our dataset combines 24 new samples from medial moraines of Glacier du Brenay, Glacier de Cheilon, Glacier de Pièce, and Glacier de Tsijiore Nouve with 15 published samples from Glacier d'Otemma. For each sample, we simulated the glacial debris transport using a simple debris particle trajectory model to approximate the time of debris erosion and to correct the measured [10Be] for post-depositional 10Be accumulation. Our derived apparent rockwall erosion rates range between ∼ 0.6 and 10.0 mm yr−1. Whereas the longest downglacier [10Be] record presumably reaches back to the end of the Little Ice Age and suggests a systematic increase in rockwall erosion rates over the last ∼ 200 years, the shorter records only cover the last ∼ 100 years from the recent deglaciation period and indicate temporally more stable erosion rates. For the estimated time of debris erosion, ice cover changes across most source rockwalls were small, suggesting that our records are largely unaffected by the contribution of recently deglaciated bedrock of possibly different [10Be], but admixture of subglacially derived debris cannot be excluded at every site. Comparing our sites suggests that apparent rockwall erosion rates are higher where rockwalls are steep and north-facing, indicating a potential slope and temperature control on rockwall erosion around Pigne d'Arolla.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136104522","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA 建立一个双峰景观:基岩岩性和床层厚度对美国新墨西哥州最后机会峡谷形态的控制
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-10-09 DOI: 10.5194/esurf-11-995-2023
Sam Anderson, Nicole Gasparini, Joel Johnson
{"title":"Building a bimodal landscape: bedrock lithology and bed thickness controls on the morphology of Last Chance Canyon, New Mexico, USA","authors":"Sam Anderson, Nicole Gasparini, Joel Johnson","doi":"10.5194/esurf-11-995-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-995-2023","url":null,"abstract":"Abstract. We explore how rock properties and channel morphology vary with rock type in Last Chance Canyon, Guadalupe Mountains, New Mexico, USA. The rocks here are composed of horizontally to near-horizontally interbedded carbonate and sandstone. This study focuses on first- and second-order channel sections, where the streams have a lower channel steepness index (ksn) upstream and transition to higher ksn values downstream. We hypothesize that differences in bed thickness and rock strength influence ksn values, both locally by influencing bulk bedrock strength and also nonlocally through the production of coarse sediment. We collected discontinuity intensity data (the length of bedding planes and fractures per unit area), Schmidt hammer rebound measurements, and measured the largest boulder at every 12.2 m elevation contour to test this hypothesis. Bedrock and boulder mineralogy were determined using a lab-based carbonate dissolution method. High-resolution orthomosaics and digital surface models (DSMs) were generated from drone and ground-based photogrammetry. The orthomosaics were used to map channel sections with exposed bedrock. The United States Geological Survey (USGS) 10 m digital elevation models (DEMs) were used to measure channel slope and hillslope relief. We find that discontinuity intensity is negatively correlated with Schmidt hammer rebound values in sandstone bedrock. Channel steepness tends to be higher where reaches are primarily incising through more thickly bedded carbonate bedrock and lower where more thinly bedded sandstone is exposed. Bedrock properties also influence channel morphology indirectly, through coarse sediment input from adjacent hillslopes. Thickly bedded rock layers on hillslopes erode to contribute larger colluvial sediment to adjacent channels, and these reaches have higher ksn values. Larger and more competent carbonate sediment armors both the carbonate and the more erodible sandstone and reduces steepness contrasts across rock types. We interpret that in the relatively steep, high-level ksn downstream channel sections, the slope is primarily controlled by the coarse alluvial cover. We further posit that the upstream low-level ksn reaches have a base level that is fixed by the steep downstream reaches, resulting in a stable configuration, where channel slopes have adjusted to lithologic differences and/or sediment armor.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135094101","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Geotechnical controls on erodibility in fluvial impact erosion 河流冲击侵蚀中可蚀性的岩土控制
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-10-09 DOI: 10.5194/esurf-11-979-2023
Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, Audrey Bonnelye
{"title":"Geotechnical controls on erodibility in fluvial impact erosion","authors":"Jens M. Turowski, Gunnar Pruß, Anne Voigtländer, Andreas Ludwig, Angela Landgraf, Florian Kober, Audrey Bonnelye","doi":"10.5194/esurf-11-979-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-979-2023","url":null,"abstract":"Abstract. Bedrock incision by rivers is commonly driven by the impacts of moving bedload particles. The speed of incision is modulated by rock properties, which is quantified within a parameter known as erodibility that scales the erosion rate to the erosive action of the flow. Although basic models for the geotechnical controls on rock erodibility have been suggested, large scatter and trends in the remaining relationships indicate that they are incompletely understood. Here, we conducted dedicated laboratory experiments measuring erodibility using erosion mills. In parallel, we measured uniaxial compressive strength, tensile strength, Young's modulus, bulk density, and the Poisson's ratio for the tested lithologies. We find that under the same flow conditions, erosion rates of samples from the same lithology can vary by a factor of up to 60. This indicates that rock properties that may vary over short distances within the same rock can exert a strong control on its erosional properties. The geotechnical properties of the tested lithologies are strongly cross-correlated, preventing a purely empirical determination of their controls on erodibility. The currently prevailing model predicts that erosion rates should scale linearly with Young's modulus and inversely with the square of the tensile strength. We extend this model using first-principle physical arguments, taking into account the geotechnical properties of the impactor. The extended model provides a better description of the data than the existing model. Yet, the fit is far from satisfactory. We suggest that the ratio of mineral grain size to the impactor diameter presents a strong control on erodibility that has not been quantified so far. We also discuss how our laboratory results upscale to real landscapes and long timescales. For both a revised stream power incision model and a sediment-flux-dependent incision model, we suggest that long-term erosion rates scale linearly with erodibility and that, within this theoretical framework, relative laboratory measurements of erodibility can be applied at the landscape scale.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135141960","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Linear-stability analysis of plane beds under flows with suspended loads 悬载流作用下平面床的线性稳定性分析
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-10-06 DOI: 10.5194/esurf-11-961-2023
Koji Ohata, Hajime Naruse, Norihiro Izumi
{"title":"Linear-stability analysis of plane beds under flows with suspended loads","authors":"Koji Ohata, Hajime Naruse, Norihiro Izumi","doi":"10.5194/esurf-11-961-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-961-2023","url":null,"abstract":"Abstract. Plane beds develop under flows in fluvial and marine environments; they are recorded as parallel lamination in sandstone beds, such as those found in turbidites. However, whereas turbidites typically exhibit parallel lamination, they rarely feature dune-scale cross-lamination. Although the reason for the scarcity of dune-scale cross-lamination in turbidites is still debated, the formation of dunes may be dampened by suspended loads. Here, we perform, for the first time, linear-stability analysis to show that flows with suspended loads facilitate the formation of plane beds. For a fine-grained bed, a suspended load can promote the formation of plane beds and dampen the formation of dunes. These results of theoretical analysis were verified with observational data of plane beds under open-channel flows. Our theoretical analysis found that suspended loads promote the formation of plane beds, which suggests that the development of dunes under turbidity currents is suppressed by the presence of suspended loads.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134944030","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland 冰岛东部skaft<e:1> cauldron测量到的最大地震的地面和冰下地震特征jökulhlaup
2区 地球科学
Earth Surface Dynamics Pub Date : 2023-10-05 DOI: 10.5194/esurf-11-933-2023
Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, Thoralf Dietrich
{"title":"Subaerial and subglacial seismic characteristics of the largest measured jökulhlaup from the eastern Skaftá cauldron, Iceland","authors":"Eva P. S. Eibl, Kristin S. Vogfjörd, Benedikt G. Ófeigsson, Matthew J. Roberts, Christopher J. Bean, Morgan T. Jones, Bergur H. Bergsson, Sebastian Heimann, Thoralf Dietrich","doi":"10.5194/esurf-11-933-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-933-2023","url":null,"abstract":"Abstract. Subglacial floods cause seismic tremors that can be located and tracked in space and time using a seismic array. Here, we shed light on the generating mechanisms of the seismic signals observed during the largest measured flood from the eastern Skaftá cauldron in the Vatnajökull ice cap, Iceland. We track the propagation of the flood in 2015 using two seismic arrays and a local seismic network in combination with GPS, hydrological, and geochemical data. We find that as the water drained from the subglacial lake beneath the cauldron, families of icequakes were generated in the area around the cauldron, while the glacier surface gradually subsided by more than 100 m. We detected a several-hours-long, non-harmonic tremor and high-frequency transient events migrating downglacier, following the subglacial flood front. We suggest that this tremor is composed of repeating, closely spaced icequakes that were generated as the glacier was being lifted, cracked, and deformed, thus enabling the subglacial water flow. When the lake had largely drained, the pressure within the underlying hydrothermal system dropped. At this time, we recorded minute-long tremor bursts emanating from the cauldron area, followed by an hour-long harmonic tremor each. We interpret these as being caused by hydrothermal explosions in the geothermal system within the cauldron and as being vigorous boiling in the crustal rocks, respectively, which is an interpretation corroborated by floodwater geochemical signals. Finally, the flood also led to detectable tremor due to more energetic flow in the rapids near Sveinstindur in the Skaftá river. We conclude that the flood generated five different seismic signal types that can be associated with five different geophysical processes, including the wide spectrum from brittle failure and explosions to boiling and turbulent flow.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"134976419","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信