Judith Y. Zomer, Bart Vermeulen, Antonius J. F. Hoitink
{"title":"Coexistence of two dune scales in a lowland river","authors":"Judith Y. Zomer, Bart Vermeulen, Antonius J. F. Hoitink","doi":"10.5194/esurf-11-1283-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1283-2023","url":null,"abstract":"Abstract. A secondary scale of bedforms, superimposed on larger, primary dunes, has been observed in fluvial systems worldwide. This notwithstanding, very little is known about the morphological behavior and characteristics of this secondary scale. This study aims to better characterize and understand how two dune scales coexist in fluvial systems and how both scales adapt over time and space, considering their interdependence. The study is based on analysis of a large biweekly multibeam echo sounding dataset from the river Waal, a lowland sand-bedded river. Results reveal that the secondary dune scale is ubiquitous across space and time and not limited to specific flow or transport conditions. Whereas primary dunes lengthen during low flows, secondary dune height, lee slope angle, and length correlate with discharge. Secondary dune size and migration strongly depend on the primary dune lee slope angle and height. Secondary dunes can migrate over the lee slope of low-angled primary dunes, and their height is inversely correlated to the upstream primary dune height and lee slope angle. In the Waal river, a lateral variation in bed grain size, attributed to shipping, largely affects dune morphology. Primary dunes are lower and less often present in the southern lane, where grain sizes are smaller. Here, secondary bedforms are more developed. At peak discharge, secondary bedforms even become the dominant scale, whereas primary dunes entirely disappear but are re-established during lower flows.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-12-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138579796","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Short communication: Concentrated impacts by tree canopy drips – hotspots of soil erosion in forests","authors":"Ayumi Katayama, Kazuki Nanko, Seonghun Jeong, Tomonori Kume, Yoshinori Shinohara, Steffen Seitz","doi":"10.5194/esurf-11-1275-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1275-2023","url":null,"abstract":"Abstract. The degradation of ground vegetation cover caused by large grazing herbivores frequently results in enhanced erosion rates in forest ecosystems. Splash erosion can be caused by drop impacts with a high throughfall kinetic energy (TKE) from the tree canopy. Notably larger canopy drips from structurally mediated woody surface points appear to induce even higher TKE and generate concentrated impact locations causing severe focus points of soil erosion. However, TKE at these locations has rarely been reported. This pilot study investigated the intensity of TKE at a concentrated impact location and compared it with general TKE locations under the canopy and freefall kinetic energy (FKE) outside the forest. We measured precipitation, TKE and FKE using splash cups at seven locations under Japanese beech trees and five locations outside the forest during the leafless and leafed seasons in 2021 in a mixed forest with evergreen coniferous trees and deciduous broadleaved trees in Japan. The TKE at the concentrated impact location was 15.2 and 49.7 times higher than that at the general locations under the beech and FKE, respectively. This study confirmed that canopy drip from woody surfaces could be a hotspot of soil erosion in temperate forest ecosystems. Throughfall precipitation at the concentrated impact location was 11.4 and 8.1 times higher than that at general locations and freefall, respectively. TKE per 1 mm precipitation (here, “unit TKE”) at the concentrated impact location (39.2 ± 23.7 J m−2 mm−1) was much higher than that at general locations (22.0 ± 12.7 J m−2 mm−1) and unit FKE (4.5 ± 3.5 J m−2 mm−1). Unit TKE in the leafless season was significantly lower than in the leafed season because of fewer redistribution of canopy drips induced only by woody tissue. Nevertheless, unit TKE at the concentrated impact location in the leafless season (36.4 J m−2 mm−1) was still higher than at general locations in the leafed season. These results show that potentially high rates of sediment detachment can be induced not only by throughfall precipitation but also by larger throughfall drop size distributions at the concentrated impact location, even in the leafless season. Further studies with more replication building on this first report are necessary to investigate how many of these concentrated impact locations may occur on average with different tree species to better assess the extent of the erosion risk under forests.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138568815","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Francis Matthews, Panos Panagos, Arthur Fendrich, Gert Verstraeten
{"title":"On the potential of a low-complexity model to decompose the temporal dynamics of soil erosion and sediment delivery","authors":"Francis Matthews, Panos Panagos, Arthur Fendrich, Gert Verstraeten","doi":"10.5194/egusphere-2023-2693","DOIUrl":"https://doi.org/10.5194/egusphere-2023-2693","url":null,"abstract":"<strong>Abstract.</strong> Testing and improving the capacity of soil erosion and sediment delivery models to simulate the intra-annual dynamics climatic drivers and disturbances (e.g. vegetation clearcutting, tillage events, wildfires) is critical to understand the drivers of the system variability. In seasonally changing agricultural catchments, explicit temporal dynamics are typically neglected within many soil erosion modelling approaches, in favour of a focus on the long-term annual average as the predictive target. Here, we approach the trade-off between the need for model simplicity and temporally-dynamic predictions by testing the ability of a low-complexity, spatially distributed model (WaTEM/SEDEM), to decompose the 15-day dynamics of soil erosion and sediment yield. A standardised parameterisation and implementation routine was applied to four well-studied catchments in North-West Europe with open-access validation data. Through the testing of several alternative model spatial and connectivity structures, including the addition of an empirical runoff coefficient, we show that a temporally-static calibration of transport capacity cannot adequately replicate the relative seasonal decoupling of gross (on-site) soil erosion and sediment delivery. Instead, embedding seasonality into the calibration routine significantly improved the model performance, revealing a negative relationship between gross (pixel-scale soil displacement) and net erosion (stream channel sediment load) throughout the year. By incorporating temporal dynamics, the relative net effect is a reduction in the magnitudes of the spatially-distributed sediment fluxes at aggregated timescales, compared to a temporally-lumped approach. Published catchment observations infer that the efficacy of sediment delivery via overland flow is strongly reduced in the summer by abundant vegetative boundaries and increased in the winter via soil crusting and its promotion of runoff. Models operating at temporally-aggregated timescales should account for the possibility of decoupling in time and space between gross erosion and sediment delivery in arable catchment systems, related to alternations between transport- and detachment-limited sediment transport capacity states. Despite the complexities involved in the temporal downscaling of WaTEM/SEDEM, we show the utility of this approach to: 1) identify key missing information components requiring attention to reduce error in gross erosion predictions (e.g. more consideration of antecedent soil conditions), 2) form a basis for strategically adding physical process-representation, with a focus on maintaining low model complexity while improving predictive skill, and 3) better understand the spatial and temporal interdependencies within soil erosion models when undertaking upscaling exercises.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-12-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138568937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, Jeffrey Moore
{"title":"Alpine hillslope failure in the western US: insights from the Chaos Canyon landslide, Rocky Mountain National Park, USA","authors":"Matthew C. Morriss, Benjamin Lehmann, Benjamin Campforts, George Brencher, Brianna Rick, Leif S. Anderson, Alexander L. Handwerger, Irina Overeem, Jeffrey Moore","doi":"10.5194/esurf-11-1251-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1251-2023","url":null,"abstract":"Abstract. The Chaos Canyon landslide, which collapsed on the afternoon of 28 June 2022 in Rocky Mountain National Park, presents an opportunity to evaluate instabilities within alpine regions faced with a warming and dynamic climate. Video documentation of the landslide was captured by several eyewitnesses and motivated a rapid field campaign. Initial estimates put the failure area at 66 630 m2, with an average elevation of 3555 m above sea level. We undertook an investigation of previous movement of this landslide, measured the volume of material involved, evaluated the potential presence of interstitial ice and snow within the failed deposit, and examined potential climatological impacts on the collapse of the slope. Satellite radar and optical measurements were used to calculate deformation of the landslide in the 5 years leading up to collapse. From 2017 to 2019, the landslide moved ∼5 m yr−1, accelerating to 17 m yr−1 in 2019. Movement took place through both internal deformation and basal sliding. Climate analysis reveals that the collapse took place during peak snowmelt, and 2022 followed 10 years of higher than average positive degree day sums. We also made use of slope stability modeling to test what factors controlled the stability of the area. Models indicate that even a small increase in the water table reduces the factor of safety to <1, leading to failure. We posit that a combination of permafrost thaw from increasing average temperatures, progressive weakening of the basal shear zone from several years of movement, and an increase in pore-fluid pressure from snowmelt led to the 28 June collapse. Material volumes were estimated using structure from motion (SfM) models incorporating photographs from two field expeditions on 8 July 2022 – 10 d after the slide. Detailed mapping and SfM models indicate that ∼1 258 000 ± 150 000 m3 of material was deposited at the slide toe and ∼1 340 000 ± 133 000 m3 of material was evacuated from the source area. The Chaos Canyon landslide may be representative of future dynamic alpine topography, wherein slope failures become more common in a warming climate.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138553983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Barchan swarm dynamics from a Two-Flank Agent-Based Model","authors":"Dominic T. Robson, Andreas C. W. Baas","doi":"10.5194/egusphere-2023-2900","DOIUrl":"https://doi.org/10.5194/egusphere-2023-2900","url":null,"abstract":"<strong>Abstract.</strong> We perform simulations of barchan swarms using the Two-Flank Agent-Based model investigating the effects of changing the angular separation between primary and secondary modes of wind, the density at which new dunes are injected, and the parameter <em>q</em><sub>shift</sub> which controls the rate at which sediment is reorganised to restore symmetry in an asymmetric dune. Unlike previous agent-based models, we are able to produce longitudinally homogeneous size distributions and, for sparse swarms, steady longitudinal number density. We are able to constrain <em>q</em><sub>shift</sub> by comparing the range of values for which longitudinally stability is observed with the range of values for which the width of asymmetry distributions is consistent with real-world swarms. Furthermore, we demonstrate dune size, asymmetry, dune density, spatial alignment, and collision dynamics are all strongly influenced by the angular separation of bimodal winds.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-12-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138553855","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Using repeat UAV-based laser scanning and multispectral imagery to explore eco-geomorphic feedbacks along a river corridor","authors":"Christopher Tomsett, Julian Leyland","doi":"10.5194/esurf-11-1223-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1223-2023","url":null,"abstract":"Abstract. Vegetation plays a critical role in the modulation of fluvial process and morphological evolution. However, adequately capturing the spatial and temporal variability and complexity of vegetation characteristics remains a challenge. Currently, most of the research seeking to address these issues takes place at either the individual plant scale or via larger-scale bulk roughness classifications, with the former typically seeking to characterise vegetation–flow interactions and the latter identifying spatial variation in vegetation types. Herein, we devise a method which extracts functional vegetation traits using UAV (uncrewed aerial vehicle) laser scanning and multispectral imagery and upscale these to reach-scale functional group classifications. Simultaneous monitoring of morphological change is undertaken to identify eco-geomorphic links between different functional groups and the geomorphic response of the system. Identification of four groups from quantitative structural modelling and two further groups from image analysis was achieved and upscaled to reach-scale group classifications with an overall accuracy of 80 %. For each functional group, the directions and magnitudes of geomorphic change were assessed over four time periods, comprising two summers and winters. This research reveals that remote sensing offers a possible solution to the challenges in scaling trait-based approaches for eco-geomorphic research and that future work should investigate how these methods may be applied to different functional groups and to larger areas using airborne laser scanning and satellite imagery datasets.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-12-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, Vincent Godard
{"title":"Late Pleistocene – Holocene denudation, uplift, and morphology evolution of the Armorican Massif (western Europe)","authors":"Oswald Malcles, Stéphane Mazzotti, Philippe Vernant, Vincent Godard","doi":"10.5194/egusphere-2023-2154","DOIUrl":"https://doi.org/10.5194/egusphere-2023-2154","url":null,"abstract":"<strong>Abstract.</strong> Elevated Plio-Pleistocene coastal and marine markers in stable continental regions are commonly explained by a combination of eustatic sea-level variations and regional geodynamics (e.g., mantle dynamics, active faults). In this study, we test the role of erosion rates on the Late Pleistocene uplift and landform evolution of the Armorican Massif, western France. Denudation rates are estimated for 19 drainage basins using terrestrial cosmogenic nuclide (<sup>10</sup>Be) measurements in quartz. They range between 3 and 34 m.Ma<sup>-1</sup>, with a factor of two difference between the western highland region and the central lowland region (16 ± 8 m.Ma<sup>-1</sup> vs. 9 ± 6 m.Ma<sup>-1</sup>). Assuming a thin elastic plate model, the lithosphere flexural isostatic response to these denudation rates produces an overall uplift of the Armorican Peninsula from 12 – 15 m.Ma<sup>-1</sup> in the central lowland region to 4 – 10 m.Ma<sup>-1</sup> in the western peninsula and along the coastline. We show that these erosion-driven uplift rates can explain the uplifted Late Pleistocene marine terraces along the Armorican Peninsula coastline as well as the elevated Quaternary marine deposits in the central lowland region, without necessitating additional geodynamic processes such as regional compression or local active faults. Our results suggest that, in stable continental regions, long-term erosion should be taken into account as a driver of uplift and deformation before trying to derive global or regional geodynamic or tectonic conclusions.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-11-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515333","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rabab Yassine, Ludovic Cassan, Hélène Roux, Olivier Frysou, François Pérès
{"title":"Numerical modelling of the evolution of a river reach with a complex morphology to help define future sustainable restoration decisions","authors":"Rabab Yassine, Ludovic Cassan, Hélène Roux, Olivier Frysou, François Pérès","doi":"10.5194/esurf-11-1199-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1199-2023","url":null,"abstract":"Abstract. The prediction of river morphology evolution is very complicated, especially in the case of mountain and Piedmont rivers with complex morphologies, steep slopes, and heterogeneous grain sizes. The Lac des Gaves (LDG) reach, located within the Gave de Pau River in the Hautes-Pyrénées department, France, has precisely the complex morphological characteristics mentioned above. This reach has gone through severe sediment extractions for over 50 years, leading to the construction of two weirs for riverbed stabilisation. Two large floods resulted in changes in the LDG's hydromorphological characteristics as it went from a single channel river section to a braided river reach. In this study, a 2D hydromorphological model is developed with the TELEMAC-MASCARET system to reproduce the evolution of the channel following a flood that occurred in 2018. The model's validity is assessed by comparing the simulated topographic evolution to the observed one. The results reveal the challenge to choose well-fitted sediment transport equations and friction laws that would make it possible to reproduce such complex morphology. Although the exact localisation of the multiple channels forming the braided nature of the LDG was challenging to reproduce, our model was able to provide reliable volumetric predictions as it reproduces the filling of the LDG correctly. The influence of the two weirs on the river's current and future morphology is also studied. The aim is to provide decision-makers with more reliable predictions to design suitable restoration measures for the LDG reach.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-11-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515352","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Method to evaluate large-wood behavior in terms of the convection equation associated with sediment erosion and deposition","authors":"Daisuke Harada, Shinji Egashira","doi":"10.5194/esurf-11-1183-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1183-2023","url":null,"abstract":"Abstract. Recent flood hazards occurring in mountainous areas are often characterized by numerous amounts of sediment and large wood supplied from upstream, which often exacerbate flood disasters in downstream areas. This paper proposes a method for describing large-wood behavior in terms of the convection and storage equations, together with the governing equations for describing flood flows and channel changes associated with active sediment erosion and deposition. The proposed method is tested for its validity by simulating the phenomena occurring in an open channel with an erodible bed and flood flow with numerous amounts of sediment and large wood in the Akatani River flood disaster. As a result of calculations reproducing the open channel experiment, the applicability of the method is indicated as the percentage of wood pieces captured in the sediment deposition areas in the channel is within the range of the experimental results. The results of 2-D flood flow calculations with sediment and large wood in the Akatani River flood disaster suggested that large-wood deposition is reproduced where bed deformation is well reproduced. Overall, since the proposed method makes it possible to simulate the behavior of various amounts of large wood, it can be applied to the management of hazards in mountainous rivers such as the Akatani River.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-11-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515387","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effects of seasonal variations in vegetation and precipitation on catchment erosion rates along a climate and ecological gradient: insights from numerical modeling","authors":"Hemanti Sharma, Todd A. Ehlers","doi":"10.5194/esurf-11-1161-2023","DOIUrl":"https://doi.org/10.5194/esurf-11-1161-2023","url":null,"abstract":"Abstract. Precipitation in wet seasons influences catchment erosion and contributes to annual erosion rates. However, wet seasons are also associated with increased vegetation cover, which helps resist erosion. This study investigates the effect of present-day seasonal variations in rainfall and vegetation cover on erosion rates for four catchments along the extreme climate and ecological gradient (from arid to temperate) of the Chilean Coastal Cordillera (∼ 26–∼ 38∘ S). We do this using the Landlab–SPACE landscape evolution model to account for vegetation-dependent hillslope–fluvial processes and hillslope hydrology. Model inputs include present-day (90 m) topography and a time series (from 2000–2019) of MODIS-derived Normalized Difference Vegetation Index (NDVI) for vegetation seasonality, weather station observations of precipitation, and evapotranspiration obtained from Global Land Data Assimilation System (GLDAS) Noah. The sensitivity of catchment-scale erosion rates to seasonal average variations in precipitation and/or vegetation cover was quantified using numerical model simulations. Simulations were conducted for 1000 years (20 years of vegetation and precipitation observations repeated 50 times). After detrending the results for long-term transient changes, the last 20 years were analyzed. Results indicate that when vegetation cover is variable but precipitation is held constant, the amplitude of change in erosion rates relative to mean erosion rates ranges between 5 % (arid) and 36 % (Mediterranean setting). In contrast, in simulations with variable precipitation change and constant vegetation cover, the amplitude of change in erosion rates is higher and ranges between 13 % (arid) and 91 % (Mediterranean setting). Finally, simulations with coupled precipitation and vegetation cover variations demonstrate variations in catchment erosion of 13 % (arid) to 97 % (Mediterranean setting). Taken together, we find that precipitation variations more strongly influence seasonal variations in erosion rates. However, the effects of seasonal variations in vegetation cover on erosion are also significant (between 5 % and 36 %) and are most pronounced in semi-arid to Mediterranean settings and least prevalent in arid and humid–temperature settings.","PeriodicalId":48749,"journal":{"name":"Earth Surface Dynamics","volume":null,"pages":null},"PeriodicalIF":3.4,"publicationDate":"2023-11-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"138515353","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}