Journal of Synchrotron Radiation最新文献

筛选
英文 中文
Fabrication and characterization of a full-size ultra-precise lamellar grating for the Cosmic beamline at ALS-U. 用于宇宙光束线的全尺寸超精密片层光栅的制备与表征。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-08-18 DOI: 10.1107/S1600577525005946
Dmitriy Voronov, Sooyeon Park, Lei Huang, Antoine Islegen-Wojdyla, Eric Gullikson, Howard Padmore, Tianyi Wang, Mourad Idir
{"title":"Fabrication and characterization of a full-size ultra-precise lamellar grating for the Cosmic beamline at ALS-U.","authors":"Dmitriy Voronov, Sooyeon Park, Lei Huang, Antoine Islegen-Wojdyla, Eric Gullikson, Howard Padmore, Tianyi Wang, Mourad Idir","doi":"10.1107/S1600577525005946","DOIUrl":"10.1107/S1600577525005946","url":null,"abstract":"<p><p>We have developed a new process for the production of ultra-precise variable line spacing (VLS) lamellar diffraction gratings through nanofabrication. The process enables the fabrication of full-size X-ray gratings with sub-nanometre accuracy in groove depth, an optimal land-to-groove ratio, and uniform groove depth across the entire grating area. We also established a method for evaluating VLS groove density variation using stitched Fizeau interferometry. The measurements confirmed the exceptionally high accuracy of the VLS groove density in the fabricated gratings, which is well within the specification tolerances while the residual groove density errors are vanishingly small. The gold-coated grating demonstrated near-theoretical diffraction efficiency across the energy range of 100-1200 eV.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1194-1200"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416427/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144876225","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multimodal hard X-ray nanoprobe techniques for operando investigations of photovoltaic devices. 多模态硬x射线纳米探针技术用于光电器件的operando研究。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-08-19 DOI: 10.1107/S1600577525006034
Eunyoung Choi, Sarah Wieghold, Carlo A R Perini, Yanqi Luo, Sanggyun Kim, Juan Pablo Correa-Baena, Samuel D Stranks, Julia E Parker
{"title":"Multimodal hard X-ray nanoprobe techniques for operando investigations of photovoltaic devices.","authors":"Eunyoung Choi, Sarah Wieghold, Carlo A R Perini, Yanqi Luo, Sanggyun Kim, Juan Pablo Correa-Baena, Samuel D Stranks, Julia E Parker","doi":"10.1107/S1600577525006034","DOIUrl":"10.1107/S1600577525006034","url":null,"abstract":"<p><p>Compared with conventional laboratory-scale X-ray techniques, synchrotron based X-rays with higher brilliance and higher coherence allow for the investigation of various material properties with high spatial resolution. The microscopic behaviours of materials can be examined using the Hard X-ray Nanoprobe beamline (I14) at Diamond Light Source, which provides a 50 nm focused beam and has been successfully employed to identify nanoscale optoelectronic features in energy-harvesting materials such as halide perovskites that exhibit local heterogeneity. We have developed X-ray beam-induced current (XBIC) measurement capability at I14 to address the growing demand for operando analysis in energy-harvesting research. Here, we demonstrate that X-ray fluorescence (XRF)/XBIC multimodal measurements are feasible at I14 and apply these newly implemented techniques to study perovskite solar cells with various additive concentrations to understand the effect of the additive on nanoscale optoelectronic performance. This expanded operando characterization capability offers the possibility of monitoring nanometre-scale compositional variations and corresponding optoelectronic features of actual solar cell configurations.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1211-1219"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416418/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144884134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Gamma-ray spectra and absorbed doses measured at EuXFEL undulator system. 在EuXFEL波动系统中测量的伽马射线光谱和吸收剂量。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-08-27 DOI: 10.1107/S1600577525006605
Olga Falowska-Pietrzak, Anders Hedqvist, Fredrik Hellberg, Frederik Wolff-Fabris, Niels Bassler
{"title":"Gamma-ray spectra and absorbed doses measured at EuXFEL undulator system.","authors":"Olga Falowska-Pietrzak, Anders Hedqvist, Fredrik Hellberg, Frederik Wolff-Fabris, Niels Bassler","doi":"10.1107/S1600577525006605","DOIUrl":"10.1107/S1600577525006605","url":null,"abstract":"<p><p>Characterization of the stray radiation field present in the undulator systems at the European XFEL GmbH (EuXFEL) is of great importance, as the potential damage to undulator permanent magnets, electronics and diagnostic equipment depends both on the type of particles and the energy. This work presents the energy profile of the stray radiation measured in the upstream and downstream part of the undulator system near the beam pipe. The influence of machine operation settings on the radiation field intensity was also investigated. A comparison between gamma-ray energy measurements (30 keV to 1.5 MeV) and Geant4 Monte Carlo simulations shows that stray radiation in the upstream part of the undulator system originates from high-energy electrons intersecting the beam pipe wall. The intensity of the measured signal is approximately linear to the charge passing through the undulator system and to the electron energy but is inversely proportional to the square root of the undulator gap. Measurements in the upstream part of the undulator system show that the stray radiation level can be mitigated with careful choice of accelerator settings. The intensity of the radiation with energies below approximately 400 keV is higher in the downstream part of the undulator system compared with the upstream part, during regular operation. A CZT spectrometer and RADFET measurements confirm that the radiation field in the downstream part of the undulator system is dominated by low-energy synchrotron radiation (below 200 keV), which constitutes approximately 99% of the stray radiation field.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1116-1123"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416423/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144975168","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Calculation of effective pump dose in X-ray-pump/X-ray-probe experiments. x射线泵浦/ x射线探针实验中有效泵浦剂量的计算。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-08-21 DOI: 10.1107/S1600577525006939
Sebastião Antunes, Michal Stransky, Victor Tkachenko, Ichiro Inoue, Philip Heimann, Konrad J Kapcia, Beata Ziaja
{"title":"Calculation of effective pump dose in X-ray-pump/X-ray-probe experiments.","authors":"Sebastião Antunes, Michal Stransky, Victor Tkachenko, Ichiro Inoue, Philip Heimann, Konrad J Kapcia, Beata Ziaja","doi":"10.1107/S1600577525006939","DOIUrl":"10.1107/S1600577525006939","url":null,"abstract":"<p><p>In pump-probe experiments on solid materials performed within ultrafast X-ray science, the energy deposited by an X-ray pump pulse in the sample has a non-uniform spatial distribution. The following X-ray probe pulse then measures a volume-integrated average of contributions from the differently irradiated regions of the sample. Here we propose a scheme to calculate an effective fluence of the pump pulse such that the observable of interest calculated with the effective fluence is very close to the volume-integrated observable. This approach simplifies computational simulations of X-ray irradiated solids, which typically use periodic boundary conditions and assume a uniformly irradiated simulation box. Obtaining a prediction on a volume-integrated observable requires a significant computational effort, as it is necessary to run multiple simulations for the different exposure conditions and then perform their volume integration. The proposed scheme reduces this effort to a single calculation with the effective fluence.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1106-1115"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416414/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144975222","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Conceptual design of the energy-switchable storage ring as a high-brilliance light source over a wide wavelength range. 作为宽波长范围内高亮度光源的能量可切换存储环的概念设计。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-07-21 DOI: 10.1107/S1600577525005363
Tomoko Sato, Nobumasa Funamori, Kenta Amemiya, Noriko Usami, Takuji Ohigashi, Ryoma Kataoka, Nobutaka Shimizu, Hirokazu Tanaka, Hironori Nakao, Yusuke Yamada, Daisuke Wakabayashi, Takashi Obina, Masahiro Adachi, Yukinori Kobayashi, Yoshito Shimosaki, Yasunori Tanimoto, Kimichika Tsuchiya, Kentaro Harada, Naoto Yamamoto, Noriyuki Igarashi
{"title":"Conceptual design of the energy-switchable storage ring as a high-brilliance light source over a wide wavelength range.","authors":"Tomoko Sato, Nobumasa Funamori, Kenta Amemiya, Noriko Usami, Takuji Ohigashi, Ryoma Kataoka, Nobutaka Shimizu, Hirokazu Tanaka, Hironori Nakao, Yusuke Yamada, Daisuke Wakabayashi, Takashi Obina, Masahiro Adachi, Yukinori Kobayashi, Yoshito Shimosaki, Yasunori Tanimoto, Kimichika Tsuchiya, Kentaro Harada, Naoto Yamamoto, Noriyuki Igarashi","doi":"10.1107/S1600577525005363","DOIUrl":"10.1107/S1600577525005363","url":null,"abstract":"<p><p>The energy-switchable storage ring (ESSR) is proposed as a light source that achieves high-brilliance synchrotron radiation across a wide wavelength range, from vacuum ultraviolet to hard X-rays, and efficient power consumption. The ESSR facilitates the effective operation of large-scale systems required for large experimental apparatus and stringent safety management. It also significantly improves research quality by enabling a more precise understanding of sample states, particularly subtle differences in experimental conditions that are difficult to reproduce fully.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1143-1151"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416436/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144676238","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A low-background setup for in situ X-ray total scattering combined with fast scanning calorimetry. 结合快速扫描量热法的原位x射线全散射低背景装置。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-07-23 DOI: 10.1107/S1600577525005594
Peihao Sun, Jacopo Baglioni, Beatrice Baraldi, Weilong Chen, Daniele Lideo, Lara Piemontese, Francesco Dallari, Marco Di Michiel, Giulio Monaco
{"title":"A low-background setup for in situ X-ray total scattering combined with fast scanning calorimetry.","authors":"Peihao Sun, Jacopo Baglioni, Beatrice Baraldi, Weilong Chen, Daniele Lideo, Lara Piemontese, Francesco Dallari, Marco Di Michiel, Giulio Monaco","doi":"10.1107/S1600577525005594","DOIUrl":"10.1107/S1600577525005594","url":null,"abstract":"<p><p>We demonstrate a setup, combining fast scanning calorimetry with X-ray total scattering at a synchrotron beamline, allowing for in situ characterizations of the nano-scale structure of samples during and after temperature scans. The setup features a portable vacuum chamber providing a high signal-to-background ratio even on amorphous samples, which enables the observation of detailed structural changes between different sample states. We present three use cases, including one that leverages the high cooling rate of 10<sup>4</sup> K s<sup>-1</sup> achievable by this setup. Our demonstration opens the door to various applications in materials science where understanding the interplay between structure and thermodynamics is crucial.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1228-1234"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416420/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144692120","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
3DMPR - a robust morphological approach for applying phase retrieval in proximity to highly attenuating objects in computed tomography. 3DMPR -一种鲁棒形态学方法,用于在计算机断层扫描中高度衰减的物体附近应用相位检索。
IF 3 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-09-01 Epub Date: 2025-07-31 DOI: 10.1107/S1600577525005843
James A Pollock, L C P Croton, K S Morgan, K J Crossley, M J Wallace, G A Buckley, S B Hooper, M J Kitchen
{"title":"3DMPR - a robust morphological approach for applying phase retrieval in proximity to highly attenuating objects in computed tomography.","authors":"James A Pollock, L C P Croton, K S Morgan, K J Crossley, M J Wallace, G A Buckley, S B Hooper, M J Kitchen","doi":"10.1107/S1600577525005843","DOIUrl":"10.1107/S1600577525005843","url":null,"abstract":"<p><p>X-ray imaging is a fast, precise and non-invasive method of imaging which, when combined with computed tomography, provides detailed 3D rendering of samples. Incorporating propagation-based phase contrast can vastly improve data quality for weakly attenuating samples via phase retrieval, allowing radiation exposure to be reduced. However, applying phase retrieval to multi-material samples commonly requires the choice of which material boundary to tune the reconstruction. Selecting the boundary with strongest phase contrast increases noise suppression, but at the detriment of over-blurring other interfaces and potentially removing quantitative sample information. Additionally, conventional phase retrieval algorithms cannot be used for regions bounded by more than one material, requiring alternative methods. Here we present a computationally efficient, non-iterative nor AI-mediated method for applying strong phase retrieval, whilst preserving sharp boundaries for all materials within the sample. 3D phase retrieval is combined with morphological operations to prevent over-blurring artefacts from being introduced, while avoiding the potentially long convergence times required by iterative approaches. This technique, entitled 3DMPR, was tested on phase contrast images of a rabbit kitten brain encased by the surrounding dense skull. Using 24 keV synchrotron radiation with a 5 m propagation distance, 3DMPR provided a 6.8-fold improvement in the signal-to-noise ratio (SNR) of brain tissue over the standard phase retrieval procedure, without over-smoothing the images. Simultaneous quantification of edge resolution and SNR gain was performed with an aluminium-water phantom imaged using a microfocus X-ray tube at 35 kV<sub>p</sub> and 0.576 m effective propagation distance. There, 3DMPR provided a four-fold SNR boost whilst preserving the boundary spatial resolution at 54 ± 1 µm, compared with 108 ± 2 µm using conventional phase retrieval. These results illustrate the ability of 3DMPR to create new avenues of dose reduction in clinical settings.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1319-1327"},"PeriodicalIF":3.0,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12416424/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144762035","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
ALS-ENABLE: creating synergy and opportunity at the Advanced Light Source synchrotron structural biology beamlines. ALS-ENABLE:在先进光源同步加速器结构生物光束线上创造协同作用和机会。
IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-07-01 Epub Date: 2025-06-18 DOI: 10.1107/S1600577525004205
Corie Y Ralston, Sayan Gupta, Joshua T Del Mundo, Aimee Chi Soe, Brandon Russell, Behzad Rad, James Tyler, Sathi Paul, Darren N Kahan, Line G Kristensen, Simruthi Subramanian, Savannah Kidd, Kathryn Burnett, Banumathi Sankaran, Scott Classen, Daniil M Prigozhin, John R Taylor, Jeff M Dickert, Kevin B Royal, Anthony Rozales, Stacey L Ortega, Marc Allaire, Jay C Nix, Greg L Hura, James M Holton, Michal Hammel, P D Adams
{"title":"ALS-ENABLE: creating synergy and opportunity at the Advanced Light Source synchrotron structural biology beamlines.","authors":"Corie Y Ralston, Sayan Gupta, Joshua T Del Mundo, Aimee Chi Soe, Brandon Russell, Behzad Rad, James Tyler, Sathi Paul, Darren N Kahan, Line G Kristensen, Simruthi Subramanian, Savannah Kidd, Kathryn Burnett, Banumathi Sankaran, Scott Classen, Daniil M Prigozhin, John R Taylor, Jeff M Dickert, Kevin B Royal, Anthony Rozales, Stacey L Ortega, Marc Allaire, Jay C Nix, Greg L Hura, James M Holton, Michal Hammel, P D Adams","doi":"10.1107/S1600577525004205","DOIUrl":"10.1107/S1600577525004205","url":null,"abstract":"<p><p>ALS-ENABLE is an integrated NIH P30 resource at the Advanced Light Source synchrotron at Lawrence Berkeley National Laboratory in Berkeley, California, USA. The resource provides a single portal to the combined mature structural biology technologies of macromolecular crystallography, small-angle X-ray scattering and X-ray footprinting mass spectrometry, and includes beamlines 2.0.1, 3.3.1, 4.2.2, 5.0.1, 5.0.2, 5.0.3, 8.2.1, 8.2.2, 8.3.1 and 12.3.1. This paper describes the organizational structure and the technologies of ALS-ENABLE. A case study showcasing the main technologies of the resource applied to the characterization of the SpyCatcher-SpyTag protein system is presented.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1059-1067"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236258/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144327449","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Characterization of cryo-cooled silicon crystal monochromators via measurement of flux versus power. 通过通量与功率的测量来表征低温冷却硅晶体单色仪。
IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-07-01 Epub Date: 2025-05-23 DOI: 10.1107/S160057752500342X
Lucia Alianelli, Hossein Khosroabadi, John Sutter, Andrew C Walters, Pierpaolo Romano, Kalotina Geraki, Francesco Carlá, Jonathan Rawle, Sarah Barnett, Kawal Sawhney
{"title":"Characterization of cryo-cooled silicon crystal monochromators via measurement of flux versus power.","authors":"Lucia Alianelli, Hossein Khosroabadi, John Sutter, Andrew C Walters, Pierpaolo Romano, Kalotina Geraki, Francesco Carlá, Jonathan Rawle, Sarah Barnett, Kawal Sawhney","doi":"10.1107/S160057752500342X","DOIUrl":"10.1107/S160057752500342X","url":null,"abstract":"<p><p>A study on the thermal load of cryogenically cooled silicon in synchrotron double-crystal monochromators is presented, based on experimental data from four different beamlines at Diamond Light Source. Different amounts of power are deposited on the first monochromator crystal by varying the storage ring current. The resulting crystal deformation causes a decline in the diffraction efficiency when power and power density are above threshold values. The results are compatible with an analytical model of thermo-mechanical deformation. Acceptable monochromator heat load values are determined with this model, to ensure optimal function of the monochromator. This model, previously tested against finite element analyses, is now validated against measured data and it will be used as a tool for initial analysis of monochromator performance on upgraded photon sources.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"919-923"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236249/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144133276","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
High-resolution electron-multi-ion coincidence set-up for gas-phase experiments in the tender and hard X-ray range. 软、硬x射线范围气相实验的高分辨率电子-多离子重合装置。
IF 2.5 3区 物理与天体物理
Journal of Synchrotron Radiation Pub Date : 2025-07-01 Epub Date: 2025-06-23 DOI: 10.1107/S1600577525004862
Edwin Kukk, Regis Vacheresse, Iyas Ismail, Tatiana Marchenko, Renaud Guillemin, Maria Novella Piancastelli, Marc Simon, Oksana Travnikova
{"title":"High-resolution electron-multi-ion coincidence set-up for gas-phase experiments in the tender and hard X-ray range.","authors":"Edwin Kukk, Regis Vacheresse, Iyas Ismail, Tatiana Marchenko, Renaud Guillemin, Maria Novella Piancastelli, Marc Simon, Oksana Travnikova","doi":"10.1107/S1600577525004862","DOIUrl":"10.1107/S1600577525004862","url":null,"abstract":"<p><p>The MUSTACHE setup (MUlti-STep photofragmentation studies by Auger electron-ion Coincidences using High Energy photons) is a high-resolution electron-multi-ion coincidence system optimized for gas-phase experiments in the tender (∼2-10 keV) and hard (>5 keV) X-ray range. The system integrates a high-resolution hemispherical electron analyzer with a Wiley-McLaren-type ion time-of-flight (TOF) spectrometer, enabling coincidence measurements of Auger electrons and high-energy photoelectrons. Designed to overcome challenges in high-energy electron detection while maintaining excellent energy resolution, the setup covers a broad kinetic energy range up to 5 keV, allowing investigation of hard-X-ray-induced Auger cascades in molecules containing high-Z elements, where initial fluorescence decay is followed by Auger processes within this 5 keV detection window. The ion TOF spectrometer provides high-resolution ion mass and momentum analysis, essential for studying light and fast ions generated by deep-core ionization. System capabilities are demonstrated through test measurements on benchmark atomic and molecular systems, such as argon, nitrogen and carbon disulfide. These measurements demonstrate energy-resolved high-kinetic-energy photoelectron-ion coincidences and momentum-resolved multi-ion coincidences following deep-core ionization and Coulomb explosion. MUSTACHE enables investigations into deep-core ionization, Auger cascade processes and Coulomb explosion dynamics in isolated gas-phase species, offering insights into fundamental ionization and fragmentation processes. These results demonstrate that the MUSTACHE setup is a powerful tool for high-resolution electron-ion coincidence spectroscopy, extending advanced coincidence techniques into the hard X-ray regime and providing unprecedented opportunities for studying high-energy X-ray-induced phenomena.</p>","PeriodicalId":48729,"journal":{"name":"Journal of Synchrotron Radiation","volume":" ","pages":"1017-1027"},"PeriodicalIF":2.5,"publicationDate":"2025-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12236256/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144477400","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信