OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-11-10DOI: 10.1080/2162402X.2024.2425124
Mikael Ispirjan, Sascha Marx, Eric Freund, Steffen K Fleck, Joerg Baldauf, Karl Roessler, Henry W S Schroeder, Sander Bekeschus
{"title":"Markers of tumor-associated macrophages and microglia exhibit high intratumoral heterogeneity in human glioblastoma tissue.","authors":"Mikael Ispirjan, Sascha Marx, Eric Freund, Steffen K Fleck, Joerg Baldauf, Karl Roessler, Henry W S Schroeder, Sander Bekeschus","doi":"10.1080/2162402X.2024.2425124","DOIUrl":"10.1080/2162402X.2024.2425124","url":null,"abstract":"<p><strong>Background: </strong>Human glioblastoma multiforme (GBM) is a highly aggressive tumor with insufficient therapies available. Especially, novel concepts of immune therapies fail due to a complex immunosuppressive microenvironment, high mutational rates, and inter-patient variations. The intratumoral heterogeneity is currently not sufficiently investigated.</p><p><strong>Methods: </strong>Biopsies from six different locations were taken in a cohort of 16 GBM patients who underwent surgery. The tissue slides were analyzed utilizing high-content imaging microscopy and algorithm-based image quantification. Several immune markers for macrophage and microglia subpopulations were investigated. Flow cytometry was used to validate key results. Besides the surface marker, cytokines were measured and categorized based on their heterogenicity and overall expression.</p><p><strong>Results: </strong>M2-like antigens, including CD204, CD163, Arg1, and CSF1R, showed comparatively higher expression, with GFAP displaying the least intratumoral heterogeneity. In contrast, anti-tumor-macrophage-like antigens, such as PSGL-1, CD16, CD68, and MHC-II, exhibited low overall expression and concurrent high intratumoral heterogeneity. CD16 and PSGL-1 were the most heterogeneous antigens. High expression levels were observed for cytokines IL-6, VEGF, and CCL-2. VILIP-a was revealed to differentiate most in principle component analysis. Cytokines with the lowest overall expression, such as TGF-β1, β-NGF, TNF-α, and TREM1, showed low intratumoral heterogeneity, in contrast to βNGF, TNF-α, and IL-18, which displayed high heterogeneity despite low expression.</p><p><strong>Conclusion: </strong>The study showed high intratumoral heterogeneity in GBM, emphasizing the need for a more detailed understanding of the tumor microenvironment. The described findings could be essential for future personalized treatment strategies and the implementation of reliable diagnostics in GBM.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2425124"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11556281/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142630958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-10-26DOI: 10.1080/2162402X.2024.2421028
Peng Liu, Liwei Zhao, Oliver Kepp, Guido Kroemer
{"title":"Cytoplasmic HMGB2 orchestrates CALR translocation in the course of immunogenic cell death.","authors":"Peng Liu, Liwei Zhao, Oliver Kepp, Guido Kroemer","doi":"10.1080/2162402X.2024.2421028","DOIUrl":"10.1080/2162402X.2024.2421028","url":null,"abstract":"<p><p>A recent in vitro study showed that pharmacological inhibition of the nuclear export receptor XPO1 suppresses oxaliplatin-induced nuclear release of HMGB1 and HMGB2, as well as the translocation of CALR to the plasma membrane. Moreover, cell-targeted-HMGB2 protein potently induced CALR exposure, even in the absence of oxaliplatin.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2421028"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11520571/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142711675","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-11-26DOI: 10.1080/2162402X.2024.2429186
Sanghoon Lee, Youngbin Cho, Yiting Li, Ruxuan Li, Angela Wong Lau, Matthew S Laird, Daniel Brown, Priscilla McAuliffe, Adrian V Lee, Steffi Oesterreich, Ioannis K Zervantonakis, Hatice Ulku Osmanbeyoglu
{"title":"Cancer-cell derived S100A11 promotes macrophage recruitment in ER+ breast cancer.","authors":"Sanghoon Lee, Youngbin Cho, Yiting Li, Ruxuan Li, Angela Wong Lau, Matthew S Laird, Daniel Brown, Priscilla McAuliffe, Adrian V Lee, Steffi Oesterreich, Ioannis K Zervantonakis, Hatice Ulku Osmanbeyoglu","doi":"10.1080/2162402X.2024.2429186","DOIUrl":"10.1080/2162402X.2024.2429186","url":null,"abstract":"<p><p>Macrophages are pivotal in driving breast tumor development, progression, and resistance to treatment, particularly in estrogen receptor-positive (ER+) tumors, where they infiltrate the tumor microenvironment (TME) influenced by cancer cell-secreted factors. By analyzing single-cell RNA sequencing data from 25 ER+ tumors, we elucidated interactions between cancer cells and macrophages, correlating macrophage density with epithelial cancer cell density. We identified that S100A11, a previously unexplored factor in macrophage-cancer crosstalk, predicts high macrophage density and poor outcomes in ER+ tumors. We found that recombinant S100A11 enhances macrophage infiltration and migration in a dose-dependent manner. Additionally, in a 3D matrix using a panel of three ER+ breast cancer cell lines, we showed that secreted S100A11 levels from cancer cells were associated with increased monocyte infiltration that subsequently differentiation toward macrophages. Genetic silencing of S100A11 in the S100A11-high T47D cancer cells reduced monocyte infiltration, consistent with results using a S100A11 blocking antibody in T47D cancer cells and in a clinically relevant patient-derived organoid model. Phenotypic analysis of macrophages cocultured with T47D cancer cells following S100A11 knockdown revealed lower expression of the immunosuppressive marker CD206, further underscoring the role of S100A11 as a paracrine regulator of pro-tumorigenic cancer-macrophage crosstalk. This study offers novel insights into the interplay between macrophages and cancer cells in ER+ breast tumors, highlighting S100A11 as a potential therapeutic target to modulate the macrophage-rich tumor microenvironment.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2429186"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601052/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-11-17DOI: 10.1080/2162402X.2024.2429846
Léa Bourguignon, Roxann Hétu-Arbour, Tania Charpentier, Marilène Bolduc, Denis Leclerc, Krista M Heinonen, Alain Lamarre
{"title":"Systemic administration of a viral nanoparticle neoadjuvant prevents lung metastasis development through emergency myelopoiesis.","authors":"Léa Bourguignon, Roxann Hétu-Arbour, Tania Charpentier, Marilène Bolduc, Denis Leclerc, Krista M Heinonen, Alain Lamarre","doi":"10.1080/2162402X.2024.2429846","DOIUrl":"10.1080/2162402X.2024.2429846","url":null,"abstract":"<p><p>Cancer presents a significant public health concern, particularly in the context of metastatic disease. Surgical removal of primary tumors, while essential, can inadvertently heighten the risk of metastasis. Thus, there is a critical need for innovative neoadjuvant therapies capable of curtailing metastatic progression before or immediately following tumor resection. Addressing this imperative, the papaya mosaic virus nanoparticle (PapMV) has demonstrated potent immunostimulatory capabilities against both viruses and tumors, effectively hindering their proliferation. Our study reveals that PapMV exerts a protective effect against lung metastasis when administered systemically prior to tumor implantation or during the early stages of metastasis in various mouse models of cancer. This anti-tumor effect is initiated by the recruitment of myeloid cells in the lungs. These cells adopt a pro-inflammatory profile, secreting cytokines such as IFN-α, thus fostering a tumor microenvironment inhospitable to tumor progression. Crucially, this protective mechanism hinges on the presence of macrophages before treatment. TLR7 and IFN-I signaling pathways also play pivotal roles in this process. Furthermore, our findings demonstrate that PapMV triggers the activation of the bone marrow emergency response, which accounts for the influx of myeloid cells into the lungs. This study unveils a novel aspect of PapMV's functionality. By bolstering the immune system, PapMV confers robust protection against metastasis at an early stage of disease progression. This discovery holds promise for therapeutic intervention, particularly as a preemptive measure prior to or just after surgical intervention.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2429846"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11581170/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142649383","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-11-16DOI: 10.1080/2162402X.2024.2425125
Georgia Lattanzi, Federica Perillo, Angélica Díaz-Basabe, Bruna Caridi, Chiara Amoroso, Alberto Baeri, Elisa Cirrincione, Michele Ghidini, Barbara Galassi, Elisa Cassinotti, Ludovica Baldari, Luigi Boni, Maurizio Vecchi, Flavio Caprioli, Federica Facciotti, Francesco Strati
{"title":"Estrogen-related differences in antitumor immunity and gut microbiome contribute to sexual dimorphism of colorectal cancer.","authors":"Georgia Lattanzi, Federica Perillo, Angélica Díaz-Basabe, Bruna Caridi, Chiara Amoroso, Alberto Baeri, Elisa Cirrincione, Michele Ghidini, Barbara Galassi, Elisa Cassinotti, Ludovica Baldari, Luigi Boni, Maurizio Vecchi, Flavio Caprioli, Federica Facciotti, Francesco Strati","doi":"10.1080/2162402X.2024.2425125","DOIUrl":"10.1080/2162402X.2024.2425125","url":null,"abstract":"<p><p>Colorectal cancer (CRC) is a multifaceted disease whose development and progression varies depending on tumor location, age of patients, infiltration of immune cells within cancer lesions, and the tumor microenvironment. These pathophysiological characteristics are additionally influenced by sex-related differences. The gut microbiome plays a role in initiation and progression of CRC, and shapes anti-tumor immune responses but how responsiveness of the immune system to the intestinal microbiota may contribute to sexual dimorphism of CRC is largely unknown. We studied survival, tumor-infiltrating immune cell populations and tumor-associated microbiome of a cohort of <i>n</i> = 184 male and female CRC patients through high-dimensional single-cell flow cytometry and 16S rRNA gene sequencing. We functionally tested the immune system-microbiome interactions in in-vivo and in-vitro models of the disease. High-dimensional single-cell flow cytometry showed that female patients are enriched by tumor-infiltrating invariant Natural Killer T (iNKT) cells but depleted by cytotoxic T lymphocytes. The enrichment of oral pathobionts and a reduction of β-glucuronidase activity are distinctive traits characterizing the gut microbiome of female patients affected by CRC. Functional assays using a collection of human primary iNKT cell lines demonstrated that the gut microbiota of female patients functionally impairs iNKT cell anti-tumor functions interfering with the granzyme-perforin cytotoxic pathway. Our results highlight a sex-dependent functional relationship between the gut microbiome, estrogen metabolism, and the decline of cytotoxic T cell responses, contributing to the sexual dimorphism observed in CRC patients with relevant implications for precision medicine and the design of targeted therapeutic approaches addressing sex bias in cancer.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2425125"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11572150/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142644638","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-12-02DOI: 10.1080/2162402X.2024.2436227
Meron Yohannes, Chiara Massa, Zelalem Desalegn, Kathrin Stückrath, Anja Mueller, Endale Anberber, Yonas Bekuretsion, Mathewos Assefa, Pablo Santos, Adamu Addissie, Marcus Bauer, Claudia Wickenhauser, Lesley Taylor, Martina Vetter, Eva Johanna Kantelhardt, Tamrat Abebe, Barbara Seliger
{"title":"Blood immune profiling of Ethiopian patients with breast cancer highlights different forms of immune escape.","authors":"Meron Yohannes, Chiara Massa, Zelalem Desalegn, Kathrin Stückrath, Anja Mueller, Endale Anberber, Yonas Bekuretsion, Mathewos Assefa, Pablo Santos, Adamu Addissie, Marcus Bauer, Claudia Wickenhauser, Lesley Taylor, Martina Vetter, Eva Johanna Kantelhardt, Tamrat Abebe, Barbara Seliger","doi":"10.1080/2162402X.2024.2436227","DOIUrl":"10.1080/2162402X.2024.2436227","url":null,"abstract":"<p><p>Breast cancer (BC) is a leading cause of death worldwide, particularly also among African woman. In order to better stratify patients for the most effective (immuno-) therapy, an in depth characterization of the immune status of BC patients is required. In this study, a cohort of 65 Ethiopian patients with primary BC underwent immune profiling by multicolor flow cytometry on peripheral blood samples collected prior to surgery and to any other therapy. Comparison with peripheral blood samples from healthy donors highlighted a general activation of the immune system, accompanied by the presence of exhausted CD4<sup>+</sup> T cells and senescent CD8<sup>+</sup> T cells with an inverted CD4/CD8 ratio in approximately 50% of BC cases. Enhanced frequencies of γδ T cells, myeloid-derived suppressor cells and regulatory T cells were also found. Correlation with clinical parameters demonstrated a progressive reduction in T cell frequencies with increasing histopathological grading of the tumor. Differences in CD8<sup>+</sup> T cells and B cells were also noted among luminal and non-luminal BC subtypes. In conclusion, Ethiopian BC patients showed several alterations in the composition and activation status of the blood immune cell repertoire, which were phenotypically associated with immune suppression. The role of these immunological changes in the clinical outcome of patients with BC will have to be determined in follow-up studies and confirmed in additional patients' cohorts.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2436227"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142773958","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"FGL2<sub>172-220</sub> peptides improve the antitumor effect of HCMV-IE1mut vaccine against glioblastoma by modulating immunosuppressive cells in the tumor microenvironment.","authors":"Shan Wang, Shasha Jiang, Xu Li, Huan Huang, Xu Qiu, Meng Yu, Xiaoli Yang, Fengjun Liu, Chen Wang, Wen Shen, Yunyang Wang, Bin Wang","doi":"10.1080/2162402X.2024.2423983","DOIUrl":"10.1080/2162402X.2024.2423983","url":null,"abstract":"<p><p>Glioblastoma multiforme (GBM) is a highly aggressive primary brain tumor characterized by poor prognosis and lack of effective treatments. In recent years, peptide vaccines that use sequences based on tumor-specific or tumor-associated antigens to activate immune responses against tumor cells have emerged as a new therapeutic strategy. In this study, we developed a novel therapeutic polypeptide vaccine targeting the tumor-associated antigen Fibrinogen-Like Protein 2 (FGL2), whose dominant epitope peptide was tandemly linked to the C-terminus of HCMV-IE1mut via a linker. We used this vaccine to compare the therapeutic efficacy of HCMV-IE1mut alone versus HCMV-IE1mut-FGL2<sub>172-220</sub> and investigate the potential mechanism of action of HCMV-IE1mut-FGL2<sub>172-220</sub> in glioma treatment. An in situ GBM model (GL261-IE1-luc cells) was used to determine the efficacy of the vaccine. Treatment with HCMV-IE1mut-FGL2<sub>172-220</sub> exerted antitumor effects and extended the survival of the GL261 animal model. We observed reduced proportions of microglia, regulatory T cells (Treg), and myeloid-derived suppressor cells (MDSC) in the tumor microenvironment (TME) by immunofluorescence. Flow cytometry showed that compared to HCMV-IE1mut alone, treatment with HCMV-IE1mut-FGL2<sub>172-220</sub> increased the proportion of CD8+ T cells and tissue-resident memory T cells (TRM). ELISA analysis showed that it improved the secretion of tumor-specific IFN-γ and TNF-α by these cells and downregulated the expression of IL-6 and IL-10. Our study demonstrates that the long-peptide FGL2<sub>172-220</sub> improves the antitumor efficacy of HCMV-IE1mut, possibly by reshaping immune cells in the glioma microenvironment. These findings lay the groundwork for the development of therapeutic antigenic peptide vaccines to improve antitumor effects for cancer.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2423983"},"PeriodicalIF":5.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542393/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-11-26DOI: 10.1080/2162402X.2024.2434280
Paul Bergeron, Fabien Milliat, Eric Deutsch, Michele Mondini
{"title":"Heterogeneous intratumor irradiation: a new partner for immunotherapy.","authors":"Paul Bergeron, Fabien Milliat, Eric Deutsch, Michele Mondini","doi":"10.1080/2162402X.2024.2434280","DOIUrl":"10.1080/2162402X.2024.2434280","url":null,"abstract":"<p><p>We recently demonstrated that a heterogeneous tumor irradiation strategy, combining high-dose and low-dose radiotherapy (RT) within the same tumor volume, can synergize with immunotherapy in mice. Our findings indicate that heterogeneous RT doses may promote the spatial diversification of the antitumor immune response. Spatial fractionation of the RT dose has the potential to enhance the therapeutic index of RT/IO combinations, particularly in scenarios where irradiating the entire tumor volume is unfeasible or excessively harmful to the patient.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2434280"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11601051/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142717563","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HLA class II neoantigen presentation for CD4<sup>+</sup> T cell surveillance in HLA class II-negative colorectal cancer.","authors":"Satoru Matsumoto, Takahiro Tsujikawa, Serina Tokita, Mai Mohamed Bedeir, Kazuhiko Matsuo, Fumitake Hata, Yoshihiko Hirohashi, Takayuki Kanaseki, Toshihiko Torigoe","doi":"10.1080/2162402X.2024.2404665","DOIUrl":"10.1080/2162402X.2024.2404665","url":null,"abstract":"<p><p>Neoantigen-reactive CD4<sup>+</sup> T cells play a key role in the anti-tumor immune response. However, the majority of epithelial tumors are negative for HLA class II (HLA-II) surface expression, and less is known about the processing of HLA-II antigens. Here, we directly identified naturally presented HLA-II neoantigens in HLA-II negative colorectal cancer (CRC) tissue using a proteogenomic approach. The neoantigens were immunogenic and induced patient CD4<sup>+</sup> T cells with a Th1-like memory phenotype that produced IFN-γ, IL2 and TNF-α. Multiplex immunohistochemistry (IHC) demonstrated an interaction between Th cells and HLA-II-positive antigen-presenting cells (APCs) at the invasive margin and within the tertiary lymphoid structures (TLS). In our CRC cohort, the density of stromal APCs was associated with HLA-II antigen presentation in the tumor microenvironment (TME), and the number of TLS was positively correlated with the number of somatic mutations in the tumors. These results demonstrate the presence of neoantigen-specific CD4<sup>+</sup> surveillance in HLA-II-negative CRC and suggest a potential role for macrophages and dendritic cells (DCs) at the invasive margin and in TLS for antigen presentation. Stromal APCs in the TME can potentially be used as a source for HLA-II neoantigen identification.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2404665"},"PeriodicalIF":5.3,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11542397/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142607005","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
OncoimmunologyPub Date : 2024-12-31Epub Date: 2024-11-21DOI: 10.1080/2162402X.2024.2432728
Santosh Kesari, Alexandre Wojcinski, Sarabjot Pabla, R J Seager, Jaya M Gill, Jose A Carrillo, Naveed Wagle, David J Park, Minhdan Nguyen, Judy Truong, Yuki Takasumi, Lisa Chaiken, Shu-Ching Chang, Garni Barkhoudarian, Daniel F Kelly, Tiffany M Juarez
{"title":"Pre-radiation Nivolumab plus ipilimumab in patients with newly diagnosed high-grade gliomas.","authors":"Santosh Kesari, Alexandre Wojcinski, Sarabjot Pabla, R J Seager, Jaya M Gill, Jose A Carrillo, Naveed Wagle, David J Park, Minhdan Nguyen, Judy Truong, Yuki Takasumi, Lisa Chaiken, Shu-Ching Chang, Garni Barkhoudarian, Daniel F Kelly, Tiffany M Juarez","doi":"10.1080/2162402X.2024.2432728","DOIUrl":"10.1080/2162402X.2024.2432728","url":null,"abstract":"<p><p>The limited success of immune checkpoint inhibitors (ICIs) in the adjuvant setting for glioblastoma highlights the need to explore administering ICIs prior to immunosuppressive radiation. To address the feasibility and safety of this approach, we conducted a phase I study in patients with newly diagnosed Grade 3 and Grade 4 gliomas. Patients received nivolumab 300 mg every 2 weeks and ipilimumab 1 mg/kg every 6 weeks until disease progression or unacceptable toxicity. Fifteen patients were treated, with four patients on dexamethasone at treatment initiation and five tumors having <i>MGMT</i> promoter methylated. Treatment began a median of 38 days post-surgery. The most common treatment-related adverse events (AEs) were rash, pruritus, fatigue, nausea, and anorexia. Grade 3 AEs were lipase increased (<i>n</i> = 2), anorexia (<i>n</i> = 1), pruritus (<i>n</i> = 1), and rash (<i>n</i> = 3), and one Grade 4 cerebral edema occurred. Median progression-free survival (mPFS) was 1.3 months and median overall survival (mOS) was 19.3 months (95% CI, 12.9-NA). Three patients deferred conventional radiochemotherapy for over seven months while ten eventually received it. Progressing tumors tended to exhibit higher LAG-3 levels at baseline compared to shrinking tumors. Analysis of paired pre-treatment and post-progression tissue (<i>n</i> = 5) showed trends of up-regulated TGF-β, ERBB2, ERBB3, and ERBB4 signaling pathways, downregulated PPAR signaling, decreased B cell proportions, and increased monocytes proportions in tumors post-treatment. We show nivolumab plus ipilimumab can be safely administered prior to standard radiotherapy for newly diagnosed gliomas and is operationally feasible. Clinicaltrials.gov NCT03425292 registered February 7, 2018.</p>","PeriodicalId":48714,"journal":{"name":"Oncoimmunology","volume":"13 1","pages":"2432728"},"PeriodicalIF":6.5,"publicationDate":"2024-12-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11587836/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142689288","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}