Open Physics最新文献

筛选
英文 中文
Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain 无界域上分数空间耦合惠瑟姆-布罗尔-考普方程的傅立叶谱法
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-08-16 DOI: 10.1515/phys-2024-0071
Li-Fang Zhao, Wei Zhang
{"title":"Fourier spectral method for the fractional-in-space coupled Whitham–Broer–Kaup equations on unbounded domain","authors":"Li-Fang Zhao, Wei Zhang","doi":"10.1515/phys-2024-0071","DOIUrl":"https://doi.org/10.1515/phys-2024-0071","url":null,"abstract":"Due to the nonlocality of fractional derivatives, the numerical methods for solving nonlinear fractional Whitham–Broer–Kaup (WBK) equations are time-consuming and tedious. Therefore, it is a research hotspot to explore the numerical solution of fractional-order WBK equation. The main goal of this study is to provide an efficient method for the fractional-in-space coupled WBK equations on unbounded domain and discover some novel anomalous transmission behaviors. First, the numerical solution is compared with the exact solution to determine the validity of the proposed method on large time-spatial domain. Then, anomalous transmission of waves propagation of the fractional WBK equation is numerically simulated, and the influence of different fractional-order derivatives on wave propagation of the WBK equation is researched. Some novel anomalous transmission behaviors of wave propagation of the fractional WBK equation on unbounded domain are shown.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225864","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over shrinking/stretching surface 磁化辐射杂化铁流体在收缩/拉伸表面上的急剧磁力滑动效应
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-08-16 DOI: 10.1515/phys-2024-0052
Adnan Asghar, Sumera Dero, Liaquat Ali Lund, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu
{"title":"Slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over shrinking/stretching surface","authors":"Adnan Asghar, Sumera Dero, Liaquat Ali Lund, Zahir Shah, Mansoor H. Alshehri, Narcisa Vrinceanu","doi":"10.1515/phys-2024-0052","DOIUrl":"https://doi.org/10.1515/phys-2024-0052","url":null,"abstract":"The significance of the study comes in the fact that it investigates complex fluid dynamics and magnetohydrodynamics phenomena, which have the potential to be applied in a variety of domains, such as physics, engineering, and materials science. Their exceptional physical significance stems from their ability to combine the unique properties of multiple substances to provide the desired functions and performance characteristics. However, in this study, the numerical studies of slip effects on magnetized radiatively hybridized ferrofluid flow with acute magnetic force over stretching/shrinking surface were investigated. The main objective of current research is to examine the influence of solid volume percentage of cobalt ferrite, the sharply oriented magnetic field, and velocity slip factors on the behaviour of skin friction and heat transfer subjected to suction effect. Moreover, the study included an analysis of the behaviour of velocity and temperature profiles in relation to the consideration of the magnetic parameter, the solid volume percentage of cobalt ferrite, the Prandtl number, and the thermal radiation parameter. The equations that regulate the system were converted partial differential equations into ordinary differential equations by making use of the relevant similarity variables, and then, it solved with bvp4c MATLAB software. The boundary requirements are satisfied in particular parameter ranges where dual solutions are achieved. Besides, dual solutions were obtained in shrinking zone. At critical points, the two dual solutions intersect; however, after these points, no further solutions are accessible. The heat transfer rate decreased the velocity slip factor, while it increased the thermal slip factor. In addition, the thickness of the thermal boundary layer increased thermal radiation, while simultaneously reducing the Prandtl number. Besides, the temperature profile improves when the value of cobalt ferrite is higher. In summary, according to stability analysis, he first solution is stable and the second solution is unstable.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Modeling monkeypox virus transmission: Stability analysis and comparison of analytical techniques 猴痘病毒传播模型:稳定性分析和分析技术比较
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-08-12 DOI: 10.1515/phys-2024-0056
Elkhateeb Sobhy Aly, Manoj Singh, Mohammed Ali Aiyashi, Mohammed Daher Albalwi
{"title":"Modeling monkeypox virus transmission: Stability analysis and comparison of analytical techniques","authors":"Elkhateeb Sobhy Aly, Manoj Singh, Mohammed Ali Aiyashi, Mohammed Daher Albalwi","doi":"10.1515/phys-2024-0056","DOIUrl":"https://doi.org/10.1515/phys-2024-0056","url":null,"abstract":"Monkeypox is a highly infectious disease and spreads very easily, hence posing several health concerns or risks as it may lead to outbreak. This article proposes a new mathematical model to simulate the transmission rate of the monkeypox virus-infected fractional-order differential equations using the Caputo–Fabrizio derivative. The existence, uniqueness, and stability under contraction mapping of the fixed point of the model are discussed using Krasnoselskii’s and Banach’s fixed point theorems. To verify the model proposed, we employ data that record the actual dynamics, and based on these data, the model can capture the observed transmission patterns in Ghana. Also, the analytic algorithm is used to find the result applying the Laplace Adomian decomposition method (LADM). Performance analysis of LADM is made regarding Runge-Kutta fourth order, which is the most commonly employed method for solving second-order ordinary differential equations. This comparison therefore offers information on the truth and reliability of the two techniques toward modeling the transmission pattern of the monkey pox virus. The information obtained through this study provides a better understanding of the antibodies linked to monkeypox virus spreading and provides effective strategies to doctors and politicians. This article helps shape better strategies about combating the impact of monkeypox virus in public health since it makes it easy to predict and prevent the occurrence of the disease.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225867","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The kinetic relativity theory – hiding in plain sight 动能相对论--隐藏在众目睽睽之下
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-08-10 DOI: 10.1515/phys-2024-0053
Mark V. Loen
{"title":"The kinetic relativity theory – hiding in plain sight","authors":"Mark V. Loen","doi":"10.1515/phys-2024-0053","DOIUrl":"https://doi.org/10.1515/phys-2024-0053","url":null,"abstract":"A question in physics is whether Special Relativity (SR) is the only theory that explains relativistic behavior. SR measures time dilation by a relative velocity between two frames. Laboratory experiments with a single moving body fit this concept. However, GPS satellites and their ground clocks measure time dilation by a velocity relative to a common non-rotating Earth inertial frame. To better understand the conceptual difference, an experimental survey was undertaken. The survey analysis showed that laboratory experiments also fit into the non-rotating Earth frame concept. The laboratory experiments only need to add the Earth rotational velocity to both the laboratory frame and the moving frame. The analysis also revealed that the relative velocity calculation was astonishingly close to the common Earth frame calculation. The common Earth frame then becomes the explanation for all experimental types. And it signifies that a gravity field – moving body interaction causes relativistic effects. The experimental record also contained enough data to draft an empirical kinetic theory different than SR. The “no preferred reference frame” of SR is replaced by “there is a preferred reference frame.” And the preferred frame is the nearby Earth gravity field.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936746","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Multiresponse optimisation and process capability analysis of chemical vapour jet machining for the acrylonitrile butadiene styrene polymer: Unveiling the morphology 丙烯腈-丁二烯-苯乙烯聚合物化学蒸汽喷射加工的多反应优化和工艺能力分析:揭开形态的面纱
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-07-30 DOI: 10.1515/phys-2023-0203
Shahbaz Juneja, Jasgurpreet Singh Chohan, Raman Kumar, Shubham Sharma, Ahmed Hussien Alawadi, Saurabh Aggarwal, Abhinav Kumar, Fuad A. Awwad, Muhammad Ijaz Khan, Emad A. A. Ismail
{"title":"Multiresponse optimisation and process capability analysis of chemical vapour jet machining for the acrylonitrile butadiene styrene polymer: Unveiling the morphology","authors":"Shahbaz Juneja, Jasgurpreet Singh Chohan, Raman Kumar, Shubham Sharma, Ahmed Hussien Alawadi, Saurabh Aggarwal, Abhinav Kumar, Fuad A. Awwad, Muhammad Ijaz Khan, Emad A. A. Ismail","doi":"10.1515/phys-2023-0203","DOIUrl":"https://doi.org/10.1515/phys-2023-0203","url":null,"abstract":"The implementation of three-dimensional (3D) printing technology has culminated in a notable rise in productivity and operational effectiveness for manufacturers. Additive manufacturing (AM) is a manufacturing technology that implies an alteration from the conventional approach of material removal. The fundamental idea underlying the AM technique is the gradual buildup of layers (layer-on-layer accumulation). In conventional approaches, every component can have detrimental implications due to the direct interaction between the tool and the workpiece, leading to the loss of heat through friction. The utilisation of 3D printing as a way to surpass conventional processing methods signifies a novel development in several sectors. This method involves the utilisation of unconventional techniques for the fabrication of components. The primary objective of this research is to investigate the chemical vapour jet drilling technique specifically applied to acrylonitrile butadiene styrene (ABS) materials. The intent is to enhance the surface characteristics, or surface finish (SF), and the dimensional accuracy (DA) of ABS workpieces. An evaluation regarding the reliability, repeatability, as well as preciseness of the vapour jet drilling (VJD) process is conducted <jats:italic>via</jats:italic> the utilisation of experiment and data analysis. The study employed a Taguchi L9 design of experiments to carry out a series of tests aimed at analysing the implications of three independent variables: pressure, flow rate, and standoff distance. The researchers employed a multiresponse optimisation approach to attain an optimal combination of parameters that resulted in a superior SF with DA. Consequently, the overall appeal of the outcome was reached. The process’s capabilities and dependability were assessed by conducting tests on the substrates at their optimal settings. Surface roughness and circularity were measured at numerous locations on the substrates. The study determined that the process capability indices (<jats:italic>C</jats:italic> <jats:sub>p</jats:sub> and <jats:italic>C</jats:italic> <jats:sub>pk</jats:sub>) had values over 1.33 for each of the response parameters, with <jats:italic>C</jats:italic> <jats:sub>pk</jats:sub> values also exceeding 1. The analysis of histograms and capability indices demonstrates that the VJD method, when conducted under optimised conditions, may be categorised as statistically controlled for the processing of ABS materials.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864314","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Thermal analysis of extended surfaces using deep neural networks 利用深度神经网络对扩展表面进行热分析
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-07-29 DOI: 10.1515/phys-2024-0051
Shina Daniel Oloniiju, Yusuf Olatunji Tijani, Olumuyiwa Otegbeye
{"title":"Thermal analysis of extended surfaces using deep neural networks","authors":"Shina Daniel Oloniiju, Yusuf Olatunji Tijani, Olumuyiwa Otegbeye","doi":"10.1515/phys-2024-0051","DOIUrl":"https://doi.org/10.1515/phys-2024-0051","url":null,"abstract":"The complexity of thermal analysis in practical systems has emerged as a subject of interest in various fields of science and engineering. Extended surfaces, commonly called fins, are crucial cooling and heating mechanisms in many applications, such as refrigerators and power plants. In this study, by using a deterministic approach, we discuss the thermal analysis of conduction, convection, and radiation in the presence of a magnetic force within an extended surface. The present study develops a deep neural network to analyze the mathematical model and to estimate the contributions of each dimensionless model parameter to the thermal dynamics of fins. The deep neural network used in this study makes use of a feedforward architecture in which the weights and biases are updated through backward propagation. The accuracy of the neural network model is validated using results obtained from a spectral-based linearization method. The efficiency rate of the extended surfaces is computed using the neural network and spectral methods. The results obtained demonstrate the accuracy of the neural network-based technique. The findings of this study in relation to the novel mathematical model reveal that utilizing materials with variable thermal conductivity enhances the efficiency rate of the extended surface.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864315","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Steady-state thermodynamic process in multilayered heterogeneous cylinder 多层异质圆柱体中的稳态热力学过程
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-07-29 DOI: 10.1515/phys-2024-0067
Ali M. Mubaraki, Rahmatullah Ibrahim Nuruddeen
{"title":"Steady-state thermodynamic process in multilayered heterogeneous cylinder","authors":"Ali M. Mubaraki, Rahmatullah Ibrahim Nuruddeen","doi":"10.1515/phys-2024-0067","DOIUrl":"https://doi.org/10.1515/phys-2024-0067","url":null,"abstract":"The present study formulates and further examines a steady-state heat diffusion process in a generalized multilayered heterogeneous circular composite. Sufficient boundary and interfacial data are assumed at the endpoints of the circumferential length, and the interfaces, cutting across the respective perfectly welded cylinders. A well-known classical method for solving linear partial differential equations has been sought to derive a compacted solution for the diffusion process in governing heterogeneous cylinders. Certainly, among the significant novel findings of the current study is the acquisition of a generalized series solution for <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0067_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mi>m</m:mi> </m:math> <jats:tex-math>m</jats:tex-math> </jats:alternatives> </jats:inline-formula>-body multilayered heterogeneous circular composites, in addition to the portrayal of simple, yet an efficient method for solution; away from sophisticated numerical methods or integral transform methods that are not always invertible analytically. Moreover, three prototype situations of the structure have been profoundly examined, which are then found to satisfy all imposed structural assumptions. Moreover, the current examination finds relevance in the study and the analysis and design of multilayered bodies in engineering, material science, thermodynamics, and solid mechanics.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141864316","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Utilization of OHAM to investigate entropy generation with a temperature-dependent thermal conductivity model in hybrid nanofluid using the radiation phenomenon 利用OHAM研究混合纳米流体中熵的产生,并利用辐射现象建立随温度变化的导热模型
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-07-26 DOI: 10.1515/phys-2024-0059
Farwa Waseem, Muhammad Sohail, Nadia Sarhan, Emad Mahrous Awwad, Muhammad Jahangir Khan
{"title":"Utilization of OHAM to investigate entropy generation with a temperature-dependent thermal conductivity model in hybrid nanofluid using the radiation phenomenon","authors":"Farwa Waseem, Muhammad Sohail, Nadia Sarhan, Emad Mahrous Awwad, Muhammad Jahangir Khan","doi":"10.1515/phys-2024-0059","DOIUrl":"https://doi.org/10.1515/phys-2024-0059","url":null,"abstract":"This investigation takes into account the flow of a hybrid copper–molybdenum disulfide <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>(</m:mo> <m:mi mathvariant=\"normal\">Cu</m:mi> <m:mi mathvariant=\"normal\">–</m:mi> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">MoS</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:math> <jats:tex-math>left({rm{Cu}}{rm{mbox{--}}}{{rm{MoS}}}_{2})</jats:tex-math> </jats:alternatives> </jats:inline-formula>/water nanofluid across a plane flat surface that has been nonlinearly extended in lateral directions. Suitable boundary conditions are used to characterize the nonlinear variants in the velocity and temperature profile of the sheet. The innovative aspect of this work is to examine the impact of thermal conductivity on temperature and entropy across an extended surface using hybrid nanofluids. We obtain numerical techniques of modified boundary layer ordinary differential equations using the effective and reliable optimal homotopy analysis technique (OHAM). A graphic depiction of the influence of several parameters is shown. In this case, the hybrid model takes into account <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0.01</m:mn> </m:math> <jats:tex-math>0.01</jats:tex-math> </jats:alternatives> </jats:inline-formula> of copper <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>(</m:mo> <m:mi mathvariant=\"normal\">Cu</m:mi> <m:mo>)</m:mo> </m:math> <jats:tex-math>left({rm{Cu}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0.01</m:mn> </m:math> <jats:tex-math>0.01</jats:tex-math> </jats:alternatives> </jats:inline-formula> of molybdenum disulfide <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>(</m:mo> <m:mi mathvariant=\"normal\">MoS</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:math> <jats:tex-math>{({rm{MoS}}}_{2})</jats:tex-math> </jats:alternatives> </jats:inline-formula> nanoparticles within base fluid water. The second principle of thermodynamics is used to compute the irreversibility factor. The performance of nanofluid and hybrid nanof","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Effect of the gravitational field strength on the rate of chemical reactions 引力场强度对化学反应速率的影响
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-07-25 DOI: 10.1515/phys-2024-0062
Mirza Wasif Baig
{"title":"Effect of the gravitational field strength on the rate of chemical reactions","authors":"Mirza Wasif Baig","doi":"10.1515/phys-2024-0062","DOIUrl":"https://doi.org/10.1515/phys-2024-0062","url":null,"abstract":"The magnitude of the rate of chemical reactions also depends on the position in the gravitational field where a chemical reaction is being carried out. The rate of chemical reaction conducted at a stronger gravitational field, <jats:italic>i.e.</jats:italic>, near the surface of some heavy planet, is slower than the rate of reaction conducted at a weaker gravitational field, <jats:italic>i.e.</jats:italic>, away from the surface of a heavy plant, provided temperature and pressure are kept constant at two positions in the gravitational field. The effect of gravity on the rates of reactions has been shown by formulating the rate constants from almost all types of reaction rate theories, <jats:italic>i.e.</jats:italic>, transition state theory, collision theory, Rice–Ramsperger–Kassel–Marcus, and Marcus’s theory, in the language of the general theory of relativity. The gravitational transformation of the Boltzmann constant and the energy quantum levels of molecules have been developed quantum mechanically. A gravitational transformation of thermodynamic state functions has been formulated that successfully explains the quasi-equilibrium existing between reactants and the activated complex at different gravitational fields. Gravitational mass dilation has been developed, which explains that at weaker gravitational fields, the transition states possess more kinetic energy to sweep translation on the reaction coordinate, resulting in the faster conversion of reactants into products. The gravitational transformation of the half-life equation shows gravitational time dilation for the half-life period of chemical reactions and thus renders the general theory of relativity and the present theory in accord with each other.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770954","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Double diffusion convection of Maxwell–Cattaneo fluids in a vertical slot 麦克斯韦-卡塔尼奥流体在垂直槽中的双重扩散对流
IF 1.9 4区 物理与天体物理
Open Physics Pub Date : 2024-07-24 DOI: 10.1515/phys-2024-0039
Yanjun Sun, Jialu Wang, Beinan Jia, Long Chang, Yongjun Jian
{"title":"Double diffusion convection of Maxwell–Cattaneo fluids in a vertical slot","authors":"Yanjun Sun, Jialu Wang, Beinan Jia, Long Chang, Yongjun Jian","doi":"10.1515/phys-2024-0039","DOIUrl":"https://doi.org/10.1515/phys-2024-0039","url":null,"abstract":"The convection stability of Maxwell–Cattaneo fluids in a vertical double-diffusive layer is investigated. Maxwell–Cattaneo fluids mean that the response of the heat flux with respect to the temperature gradient satisfies a relaxation time law rather than the classical Fourier one. The Chebyshev collocation method is used to resolve the linearized forms of perturbation equations, leading to the formulation of stability eigenvalue problem. By numerically solving the eigenvalue problem, the neutral stability curves in the <jats:italic>a</jats:italic>–Gr plane for the different values of solute Rayleigh number Ra<jats:sub>S</jats:sub> are obtained. Results show that increasing the double diffusion effect and Louis number Le can suppress the convective instability. Furthermore, compared with Fourier fluid, the Maxwell–Cattaneo fluids in a vertical slot cause an oscillation on the neutral stability curve. The appearance of Maxwell–Cattaneo effect enhances the convection instability. Meanwhile, it is interesting to find that the Maxwell–Cattaneo effect for convective instability becomes stronger as the Prandtl number rises. That means Prandtl number (Pr) also has a significant effect on convective instability. Moreover, the occurrence of two minima on the neutral curve can be found when Pr reaches 12.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.9,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770957","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信