Open PhysicsPub Date : 2024-09-13DOI: 10.1515/phys-2024-0079
Nikola Bošković, Branislav Radjenović, Srdjan Nikolić, Marija Radmilović-Radjenović
{"title":"Effectiveness of microwave ablation using two simultaneous antennas for liver malignancy treatment","authors":"Nikola Bošković, Branislav Radjenović, Srdjan Nikolić, Marija Radmilović-Radjenović","doi":"10.1515/phys-2024-0079","DOIUrl":"https://doi.org/10.1515/phys-2024-0079","url":null,"abstract":"Microwave ablation is becoming an increasingly important minimally invasive procedure that uses dielectric hysteresis to generate heat and destroy cancer cells. Tissue damage depends on the input power, procedure duration, and antenna position. Therefore, one of the essential problems is determining parameters that ensure the destruction of the tumor with the desired margins and minimal damage to the healthy tissue. In addition to experimental methods, computer modeling has been proven to be an effective approach for improving the performance of microwave ablation (MWA). Moreover, since the thermal spread in biological tissue is difficult to measure, the development of a predictive model from procedural planning to execution may have a great impact on patient care. This study focuses on determining the optimal parameters for MWA treatment of liver tumors using two identical parallel-positioned multi-slot coaxial antennas. The simulation results suggest that an input power of 20 W or 15 W per antenna suffices for complete tumor ablation with a sufficient safety margin for 600 and 900 s, respectively. In both cases, the created ablation zones were similar. The ablation zones for 15 W per antenna were more spherical, invading a smaller amount of healthy tissue than those for 20 W per antenna. This study may represent a step forward in planning MWA treatment for individual patients.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"17 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142260743","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-09-12DOI: 10.1515/phys-2024-0074
Sobia Sultana
{"title":"Analysis of a generalized proportional fractional stochastic differential equation incorporating Carathéodory's approximation and applications","authors":"Sobia Sultana","doi":"10.1515/phys-2024-0074","DOIUrl":"https://doi.org/10.1515/phys-2024-0074","url":null,"abstract":"Fractional stochastic differential equations (FSDEs) with fractional derivatives describe the anomalous diffusion processes by incorporating the memory effects and spatial heterogeneities of the porous medium. The stochastic component addresses the random nature of the fluid flow due to the variability in pore sizes and connectivity. The first objective of this research is to prove the well-posedness of a class of generalized proportional FSDEs, and we acquire the global existence and uniqueness of findings under certain settings that are coherent with the classic SDEs. The secondary purpose is to evaluate the continuity of findings in fractional-order formulations. The Carathéodory approximation is taken into account for a class of generalized proportional FSDEs, which is pivotal and provides well-known bounds on the norm of the solutions. Carathéodory’s approximation aids in approximating the FSDEs governing turbulent flows, ensuring the solutions are mathematically robust and physically meaningful. As is widely documented, the existence and uniqueness of solutions to certain types of differential equations can be formed under Lipschitz and linear growth conditions. Furthermore, a class of generalized proportional FSDEs with time delays is considered according to certain new requirements. With the aid of well-known inequalities and Itô isometry technique, the Ulam–Hyers stability of the analyzed framework is addressed utilizing Lipschitz and non-Lipschitz characteristics, respectively. Additionally, we provide two illustrative examples as applications to demonstrate the authenticity of our interpretations. The demonstrated outcomes will generalize some previously published findings. Finally, this deviation from fractional Brownian motion necessitates a model that can capture the subdiffusive or superdiffusive behavior.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"41 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202033","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-09-09DOI: 10.1515/phys-2024-0082
Xiangning Zhou, Muhammad Amer Qureshi, Nargis Khan, Wasim Jamshed, Siti Suzilliana Putri Mohamed Isa, Nanthini Balakrishnan, Syed M. Hussain
{"title":"Thermosolutal Marangoni convective flow of MHD tangent hyperbolic hybrid nanofluids with elastic deformation and heat source","authors":"Xiangning Zhou, Muhammad Amer Qureshi, Nargis Khan, Wasim Jamshed, Siti Suzilliana Putri Mohamed Isa, Nanthini Balakrishnan, Syed M. Hussain","doi":"10.1515/phys-2024-0082","DOIUrl":"https://doi.org/10.1515/phys-2024-0082","url":null,"abstract":"In this work, the Marangoni convective flow of magnetohydrodynamic tangent hyperbolic (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0082_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">F</m:mi> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">e</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msub> <m:mi mathvariant=\"normal\">O</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Cu</m:mi> <m:mo>/</m:mo> </m:math> <jats:tex-math>{{rm{F}}{{rm{e}}}_{3}{rm{O}}}_{4}-{rm{Cu}}/</jats:tex-math> </jats:alternatives> </jats:inline-formula>ethylene glycol) hybrid nanofluids over a plate dipped in a permeable material with heat absorption/generation, heat radiation, elastic deformation and viscous dissipation is discussed. The impact of activation energy is also examined. Hybrid nanofluids are regarded as advanced nanofluids due to the thermal characteristics and emerging advantages that support the desire to augment the rate of heat transmission. The generalized Cattaneo–Christov theory, which takes into account the significance of relaxation times, is modified for the phenomena of mass and heat transfer. The fundamental governing partial differential equations are converted to ordinary differential equations (ODEs) by adopting similarity variables. The Runge–Kutta–Fehlberg-45 technique is utilized to solve nonlinear ODEs. Regarding the non-dimensional embedded parameters, a graphic investigation of the thermal field, concentration distribution, and velocity profile is performed. The results show that the increasing Marangoni ratio parameter enhances velocity and concentration distributions while decreases the temperature distribution. The velocity profile is decreased and the efficiency of heat transfer is improved as the porosity parameter is increased. Nusselt number is diminished with the rising values of the porosity variable.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"20 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202038","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-09-09DOI: 10.1515/phys-2024-0075
Subhajit Panda, Pradyumna Kumar Pattnaik, Satya Ranjan Mishra, Shalan Alkarni, Nehad Ali Shah
{"title":"Improving heat transfer efficiency via optimization and sensitivity assessment in hybrid nanofluid flow with variable magnetism using the Yamada–Ota model","authors":"Subhajit Panda, Pradyumna Kumar Pattnaik, Satya Ranjan Mishra, Shalan Alkarni, Nehad Ali Shah","doi":"10.1515/phys-2024-0075","DOIUrl":"https://doi.org/10.1515/phys-2024-0075","url":null,"abstract":"The study aims to investigate the heat transfer efficiency in a hybrid nanofluid flow consisting of silver–molybdenum tetra sulphide (Ag–MoS<jats:sub>4</jats:sub>) with variable magnetism. The Yamada–Ota model is incorporated to account for viscous dissipation and heat source/sink effects, providing a comprehensive understanding of the fluid flow characteristics. However, the dissipative heat along with thermal radiation combined with the hybrid particles enriches the flow properties. The proposed model is simplified to its corresponding non-dimensional form for using proper similarity rules, and the set of transformed problems is handled numerically by employing the in-house MATLAB function bvp5c. The research utilizes a new statistical approach based on response surface methodology (RSM) and sensitivity evaluation to enhance the overall heat transmission performance. The work is conducted to obtain the relevant data on heat transfer rate. The concentration of nanoparticles, thermal radiation, and heat source are selected as the key parameters affecting the heat transfer efficiency. RSM is employed to optimize these parameters and determine the optimal conditions for enhanced heat transfer rate. Furthermore, the sensitivity analysis is performed to evaluate the efficiency of individual parameters on heat transportation. The findings of this study demonstrate that the hybrid nanofluid flow of Ag–MoS<jats:sub>4</jats:sub> exhibits improved heat transfer efficiency compared to conventional fluids. Further, the Yamada–Ota conductivity model is also influential in enhancing the heat transfer properties.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"8 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142201825","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-09-05DOI: 10.1515/phys-2024-0065
Yangshuo Liu, Xingyong Gao, Mingjiang Han, Huanan Wei, Hao Luo
{"title":"Study on dynamic and static tensile and puncture-resistant mechanical properties of impregnated STF multi-dimensional structure Kevlar fiber reinforced composites","authors":"Yangshuo Liu, Xingyong Gao, Mingjiang Han, Huanan Wei, Hao Luo","doi":"10.1515/phys-2024-0065","DOIUrl":"https://doi.org/10.1515/phys-2024-0065","url":null,"abstract":"Shear thickening fluid (STF)-impregnated Kevlar fabric can be used as “Liquid armor” for the protection of weapons and equipment. The concentration of dispersed phase in STF and the fabric structure are important factors that affect the mechanical properties of composites. To obtain the mechanical properties of Kevlar fabric impregnated with STF, nano-sized silicon dioxide particles (SiO<jats:sub>2</jats:sub>) and Polyethylene glycol were used as dispersing phase and dispersing medium, respectively, by impregnating Kevlar fabrics with 2D planar and three-dimensional (3D) angular interlock structure, fiber-reinforced composite fabrics impregnated with STF with different physical structures were obtained. The results show that the shear thickening behavior of STF is the most obvious when the concentration of STF is 60%. In addition, fabric structure and STF concentration play an active role in the mechanical properties of STF/Kevlar fiber reinforced composites. Compared with pure Kevlar fabric, the maximum tensile load and the maximum puncture load of the three-dimensional angular interlocking structure of STF/Kevlar fiber reinforced composites are increased by more than 13,000 N and 120 N, respectively. The research results can provide theoretical support for the mechanical properties of STF/Kevlar fiber-reinforced composites and individual protection research.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"11 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225865","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-09-03DOI: 10.1515/phys-2024-0070
Syed M. Hussain, Kashif Ali, Sohail Ahmad, Muhammad Amer Qureshi, Assmaa Abd-Elmonem, Wasim Jamshed, Ibrahim Alraddadi
{"title":"Characterizing magnetohydrodynamic effects on developed nanofluid flow in an obstructed vertical duct under constant pressure gradient","authors":"Syed M. Hussain, Kashif Ali, Sohail Ahmad, Muhammad Amer Qureshi, Assmaa Abd-Elmonem, Wasim Jamshed, Ibrahim Alraddadi","doi":"10.1515/phys-2024-0070","DOIUrl":"https://doi.org/10.1515/phys-2024-0070","url":null,"abstract":"This research endeavors to conduct an examination of the thermal characteristics within the duct filled with the copper nanoparticles and water as base fluid. In exhaust systems, like car exhausts, chimneys, and kitchen hoods, duct flows are crucial. These systems safely discharge odors, smoke, and contaminants into the atmosphere after removing them from enclosed places. The study focuses on a laminar flow regime that is both hydrodynamically and thermally developed, with a specified constraints at any cross-sectional plane. To address this, we employ the finite volume method as it stands as a judicious choice, offering a balance between computational efficiency and solution accuracy. Notably, we have observed that the deceleration of flow induced by elevated Rayleigh numbers can be effectively regulated by the application of an appropriately calibrated external magnetic field. The prime parameters of the problem with ranges are: pressure gradient <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>100</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(1le {p}_{0}le 100)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Hartmann number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:mtext>Ha</m:mtext> <m:mo>≤</m:mo> <m:mn>50</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(0le text{Ha}le 50)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>000</m:mn> <m:mo>≤</m:mo> <m:mtext>Ra</m:mtext> <m:mo>≤</m:mo> <m:mn>40</m:mn> <m:mo>,</m:mo> <m:mn>000</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(1,000le text{Ra}le 40,000)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and magnetic parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:mi>M</m:mi> <m:mo>≤</m:mo> <m:mn>50</m:mn> <","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"31 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202034","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-08-27DOI: 10.1515/phys-2024-0066
Sobia Sultana
{"title":"Robustness and dynamical features of fractional difference spacecraft model with Mittag–Leffler stability","authors":"Sobia Sultana","doi":"10.1515/phys-2024-0066","DOIUrl":"https://doi.org/10.1515/phys-2024-0066","url":null,"abstract":"Spacecraft models that mimic the Planck satellite’s behaviour have produced information on cosmic microwave background radiation, assisting physicists in their understanding of the composition and expansion of the universe. For achieving the intended formation, a framework for a discrete fractional difference spacecraft model is constructed by the use of a discrete nabla operator of variable order containing the Mittag–Leffler kernel. The efficacy of the suggested framework is evaluated employing a numerical simulation of the concerning dynamic systems of motion while taking into account multiple considerations such as exterior disruptions, parameterized variations, time-varying feedback delays, and actuator defects. The implementation of the Banach fixed-point approach provides sufficient requirements for the presence of the solution as well as a distinctive feature for such mechanisms Furthermore, the consistent stability is examined. With the aid of discrete nabla operators, we monitor the qualitative behavioural patterns of spacecraft systems to provide justification for structure’s chaos. We acquire the fixed points of the proposed trajectory. At each fixed point, we calculate the eigenvalue of the spacecraft system’s Jacobian matrix and check for zones of instability. The outcomes exhibit a wide range of multifaceted behaviours resulting from the interaction with various fractional orders in the offered system. To maintain stability and synchronize the system, nonlinear controllers are additionally provided. The study highlights the technique’s vulnerability to fractional-order factors, resulting in exclusive, changing trends and equilibrium frameworks. Because of its diverse and convoluted behaviour, the spacecraft chaotic model is an intriguing and crucial subject for research.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"63 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142225863","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-08-24DOI: 10.1515/phys-2024-0057
Baboucarr Ceesay, Nauman Ahmed, Jorge E. Macías-Díaz
{"title":"Construction of M-shaped solitons for a modified regularized long-wave equation via Hirota's bilinear method","authors":"Baboucarr Ceesay, Nauman Ahmed, Jorge E. Macías-Díaz","doi":"10.1515/phys-2024-0057","DOIUrl":"https://doi.org/10.1515/phys-2024-0057","url":null,"abstract":"This study examines the effects of various M-shaped water wave shapes on coastal environments for the modified regularized long-wave equation (MRLWE). This work explores the complex dynamics of sediment transport, erosion, and coastal stability influenced by different wave structures using the Hirota bilinear transformation as a basic analytical tool. By providing insightful information about how these wave patterns impact coastal stability, it seeks to broaden our knowledge of dynamic coastlines. As we explore the intricate interactions between water waves and beaches, the knowledge gained from this research could help direct sustainable coastal management and preservation initiatives. For convenience, a range of M-shaped wave structures are depicted, demonstrating the adaptability of the Hirota bilinear transformation approach in recognizing novel wave patterns. Overall, this work contributes to a better understanding of the dynamics of the coastal environment, highlights the wide range of applications for mathematical models in science and engineering, and helps to develop more sensible and practical coastal management and conservation strategies for the protection of coastal areas against changing water wave patterns. Finally, as far as the authors could verify, this is the first work in the literature in which M-shaped soliton solutions are derived for the MRLWE using any method.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"14 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202037","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-08-22DOI: 10.1515/phys-2024-0072
Zhenpeng He, Tao Huang, Zhenxing Bao, Ziyi Lei, Baoshen Zhang, Gui Luo, Meng Cai
{"title":"Research on optimization of combustor liner structure based on arc-shaped slot hole","authors":"Zhenpeng He, Tao Huang, Zhenxing Bao, Ziyi Lei, Baoshen Zhang, Gui Luo, Meng Cai","doi":"10.1515/phys-2024-0072","DOIUrl":"https://doi.org/10.1515/phys-2024-0072","url":null,"abstract":"The flow and heat transfer characteristics of the fluid in the combustor were investigated using numerical simulation in this study. The physical properties of the cooling airflow were fully utilized, and the structure of the combustor was improved. Film hole with novel structure (arc-shaped slot hole) was proposed and compared with cylindrical hole. The optimization schemes for the combustor liner structure were established, in the meanwhile, the influence of different inclinations and slot depths on the temperature distribution of the combustor liner wall was investigated. Compared with the original structure, the average temperature of the target cooling zones in these optimized schemes are reduced by a minimum of 15.12% (227.1 K) and a maximum of 20.65% (351.6 K). A new assessment model (weighted average temperature assessment model) was proposed to provide an effective assessment of the overall cooling effect. The following conclusions were arrived at: high temperature in localized areas is an important reason for the damage of combustor liner wall. Compared to cylindrical hole, the cooling performance of arc-shaped slot hole is better. When the hole type is the same, the larger inclination has higher jet height than the smaller inclination, and the cooling effect is worse. Increasing the slot depth <jats:italic>h</jats:italic> can improve the cooling efficiency.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"7 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202041","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Open PhysicsPub Date : 2024-08-19DOI: 10.1515/phys-2024-0069
Chunyan Liu
{"title":"The chaotic behavior and traveling wave solutions of the conformable extended Korteweg–de-Vries model","authors":"Chunyan Liu","doi":"10.1515/phys-2024-0069","DOIUrl":"https://doi.org/10.1515/phys-2024-0069","url":null,"abstract":"In this article, the phase portraits, chaotic patterns, and traveling wave solutions of the conformable extended Korteweg–de-Vries (KdV) model are investigated. First, the conformal fractional order extended KdV model is transformed into ordinary differential equation through traveling wave transformation. Second, two-dimensional (2D) planar dynamical system is presented and its chaotic behavior is studied by using the planar dynamical system method. Moreover, some three-dimensional (3D), 2D phase portraits and the Lyapunov exponent diagram are drawn. Finally, many meaningful solutions are constructed by using the complete discriminant system method, which include rational, trigonometric, hyperbolic, and Jacobi elliptic function solutions. In order to facilitate readers to see the impact of fractional order changes more intuitively, Maple software is used to draw 2D graphics, 3D graphics, density plots, contour plots, and comparison charts of some obtained solutions.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":"59 1","pages":""},"PeriodicalIF":1.9,"publicationDate":"2024-08-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142202040","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}