Xiangning Zhou, Muhammad Amer Qureshi, Nargis Khan, Wasim Jamshed, Siti Suzilliana Putri Mohamed Isa, Nanthini Balakrishnan, Syed M. Hussain
{"title":"Thermosolutal Marangoni convective flow of MHD tangent hyperbolic hybrid nanofluids with elastic deformation and heat source","authors":"Xiangning Zhou, Muhammad Amer Qureshi, Nargis Khan, Wasim Jamshed, Siti Suzilliana Putri Mohamed Isa, Nanthini Balakrishnan, Syed M. Hussain","doi":"10.1515/phys-2024-0082","DOIUrl":null,"url":null,"abstract":"In this work, the Marangoni convective flow of magnetohydrodynamic tangent hyperbolic (<jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0082_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">F</m:mi> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">e</m:mi> </m:mrow> <m:mrow> <m:mn>3</m:mn> </m:mrow> </m:msub> <m:mi mathvariant=\"normal\">O</m:mi> </m:mrow> <m:mrow> <m:mn>4</m:mn> </m:mrow> </m:msub> <m:mo>−</m:mo> <m:mi mathvariant=\"normal\">Cu</m:mi> <m:mo>/</m:mo> </m:math> <jats:tex-math>{{\\rm{F}}{{\\rm{e}}}_{3}{\\rm{O}}}_{4}-{\\rm{Cu}}/</jats:tex-math> </jats:alternatives> </jats:inline-formula>ethylene glycol) hybrid nanofluids over a plate dipped in a permeable material with heat absorption/generation, heat radiation, elastic deformation and viscous dissipation is discussed. The impact of activation energy is also examined. Hybrid nanofluids are regarded as advanced nanofluids due to the thermal characteristics and emerging advantages that support the desire to augment the rate of heat transmission. The generalized Cattaneo–Christov theory, which takes into account the significance of relaxation times, is modified for the phenomena of mass and heat transfer. The fundamental governing partial differential equations are converted to ordinary differential equations (ODEs) by adopting similarity variables. The Runge–Kutta–Fehlberg-45 technique is utilized to solve nonlinear ODEs. Regarding the non-dimensional embedded parameters, a graphic investigation of the thermal field, concentration distribution, and velocity profile is performed. The results show that the increasing Marangoni ratio parameter enhances velocity and concentration distributions while decreases the temperature distribution. The velocity profile is decreased and the efficiency of heat transfer is improved as the porosity parameter is increased. Nusselt number is diminished with the rising values of the porosity variable.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-09-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0082","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, the Marangoni convective flow of magnetohydrodynamic tangent hyperbolic (Fe3O4−Cu/{{\rm{F}}{{\rm{e}}}_{3}{\rm{O}}}_{4}-{\rm{Cu}}/ethylene glycol) hybrid nanofluids over a plate dipped in a permeable material with heat absorption/generation, heat radiation, elastic deformation and viscous dissipation is discussed. The impact of activation energy is also examined. Hybrid nanofluids are regarded as advanced nanofluids due to the thermal characteristics and emerging advantages that support the desire to augment the rate of heat transmission. The generalized Cattaneo–Christov theory, which takes into account the significance of relaxation times, is modified for the phenomena of mass and heat transfer. The fundamental governing partial differential equations are converted to ordinary differential equations (ODEs) by adopting similarity variables. The Runge–Kutta–Fehlberg-45 technique is utilized to solve nonlinear ODEs. Regarding the non-dimensional embedded parameters, a graphic investigation of the thermal field, concentration distribution, and velocity profile is performed. The results show that the increasing Marangoni ratio parameter enhances velocity and concentration distributions while decreases the temperature distribution. The velocity profile is decreased and the efficiency of heat transfer is improved as the porosity parameter is increased. Nusselt number is diminished with the rising values of the porosity variable.
本研究讨论了磁流体切线双曲线(F e 3 O 4 - Cu / {{\rm{F}}{{\rm{e}}}_{3}{\rm{O}}}_{4}-{\rm{Cu}}/ 乙二醇)混合纳米流体在浸入透气材料的板上的马兰戈尼对流,包括吸热/生热、热辐射、弹性变形和粘性耗散。还研究了活化能的影响。混合纳米流体因其热学特性和新出现的优势而被视为先进的纳米流体,这些特性和优势有助于提高热传导率。考虑到弛豫时间重要性的广义卡塔尼奥-克里斯托夫理论针对传质和传热现象进行了修改。通过采用相似变量,将基本控制偏微分方程转换为常微分方程。利用 Runge-Kutta-Fehlberg-45 技术求解非线性 ODE。关于非尺寸嵌入参数,对热场、浓度分布和速度剖面进行了图解研究。结果表明,增加马兰戈尼比率参数会增强速度和浓度分布,同时降低温度分布。随着孔隙率参数的增大,速度曲线减小,传热效率提高。努塞尔特数随着孔隙率变量值的增加而减小。
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.