Characterizing magnetohydrodynamic effects on developed nanofluid flow in an obstructed vertical duct under constant pressure gradient

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Syed M. Hussain, Kashif Ali, Sohail Ahmad, Muhammad Amer Qureshi, Assmaa Abd-Elmonem, Wasim Jamshed, Ibrahim Alraddadi
{"title":"Characterizing magnetohydrodynamic effects on developed nanofluid flow in an obstructed vertical duct under constant pressure gradient","authors":"Syed M. Hussain, Kashif Ali, Sohail Ahmad, Muhammad Amer Qureshi, Assmaa Abd-Elmonem, Wasim Jamshed, Ibrahim Alraddadi","doi":"10.1515/phys-2024-0070","DOIUrl":null,"url":null,"abstract":"This research endeavors to conduct an examination of the thermal characteristics within the duct filled with the copper nanoparticles and water as base fluid. In exhaust systems, like car exhausts, chimneys, and kitchen hoods, duct flows are crucial. These systems safely discharge odors, smoke, and contaminants into the atmosphere after removing them from enclosed places. The study focuses on a laminar flow regime that is both hydrodynamically and thermally developed, with a specified constraints at any cross-sectional plane. To address this, we employ the finite volume method as it stands as a judicious choice, offering a balance between computational efficiency and solution accuracy. Notably, we have observed that the deceleration of flow induced by elevated Rayleigh numbers can be effectively regulated by the application of an appropriately calibrated external magnetic field. The prime parameters of the problem with ranges are: pressure gradient <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>≤</m:mo> <m:msub> <m:mrow> <m:mi>p</m:mi> </m:mrow> <m:mrow> <m:mn>0</m:mn> </m:mrow> </m:msub> <m:mo>≤</m:mo> <m:mn>100</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(1\\le {p}_{0}\\le 100)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Hartmann number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:mtext>Ha</m:mtext> <m:mo>≤</m:mo> <m:mn>50</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(0\\le \\text{Ha}\\le 50)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, Rayleigh number <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>1</m:mn> <m:mo>,</m:mo> <m:mn>000</m:mn> <m:mo>≤</m:mo> <m:mtext>Ra</m:mtext> <m:mo>≤</m:mo> <m:mn>40</m:mn> <m:mo>,</m:mo> <m:mn>000</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(1,000\\le \\text{Ra}\\le 40,000)</jats:tex-math> </jats:alternatives> </jats:inline-formula>, and magnetic parameter <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0070_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mrow> <m:mo stretchy=\"false\">(</m:mo> <m:mrow> <m:mn>0</m:mn> <m:mo>≤</m:mo> <m:mi>M</m:mi> <m:mo>≤</m:mo> <m:mn>50</m:mn> </m:mrow> <m:mo stretchy=\"false\">)</m:mo> </m:mrow> </m:math> <jats:tex-math>(0\\le M\\le 50)</jats:tex-math> </jats:alternatives> </jats:inline-formula>. Furthermore, our analysis reveals that the Nusselt number exhibits a nearly linear correlation with the nanoparticle volume fraction parameter, a trend observed across a range of Rayleigh numbers and magnetic parameter values. We have noted that a mere 20% nanoparticle volume fraction can result in up to 62% rise in the Nusselt number while causing an almost 50% decrease in the factor <jats:italic>f</jats:italic> <jats:sub>Re</jats:sub>. This research framework serves as a robust foundation for understanding the intricate interplay between magnetic influences and thermal-hydraulic behavior within the delineated system.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-09-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0070","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

Abstract

This research endeavors to conduct an examination of the thermal characteristics within the duct filled with the copper nanoparticles and water as base fluid. In exhaust systems, like car exhausts, chimneys, and kitchen hoods, duct flows are crucial. These systems safely discharge odors, smoke, and contaminants into the atmosphere after removing them from enclosed places. The study focuses on a laminar flow regime that is both hydrodynamically and thermally developed, with a specified constraints at any cross-sectional plane. To address this, we employ the finite volume method as it stands as a judicious choice, offering a balance between computational efficiency and solution accuracy. Notably, we have observed that the deceleration of flow induced by elevated Rayleigh numbers can be effectively regulated by the application of an appropriately calibrated external magnetic field. The prime parameters of the problem with ranges are: pressure gradient ( 1 p 0 100 ) (1\le {p}_{0}\le 100) , Hartmann number ( 0 Ha 50 ) (0\le \text{Ha}\le 50) , Rayleigh number ( 1 , 000 Ra 40 , 000 ) (1,000\le \text{Ra}\le 40,000) , and magnetic parameter ( 0 M 50 ) (0\le M\le 50) . Furthermore, our analysis reveals that the Nusselt number exhibits a nearly linear correlation with the nanoparticle volume fraction parameter, a trend observed across a range of Rayleigh numbers and magnetic parameter values. We have noted that a mere 20% nanoparticle volume fraction can result in up to 62% rise in the Nusselt number while causing an almost 50% decrease in the factor f Re. This research framework serves as a robust foundation for understanding the intricate interplay between magnetic influences and thermal-hydraulic behavior within the delineated system.
表征恒定压力梯度下阻塞垂直管道中已开发纳米流体流动的磁流体动力学效应
本研究试图对充满纳米铜颗粒和水作为基液的管道内的热特性进行研究。在汽车尾气、烟囱和厨房抽油烟机等排气系统中,管道流量至关重要。这些系统将异味、烟雾和污染物从封闭的地方清除后,安全地排放到大气中。研究的重点是流体力学和热学发展的层流机制,在任何横截面上都有特定的约束条件。为此,我们采用了有限体积法,因为它是一种明智的选择,能在计算效率和求解精度之间取得平衡。值得注意的是,我们观察到,通过应用适当校准的外部磁场,可以有效调节因雷利数升高而引起的流动减速。问题的主要参数范围是:压力梯度( 1 ≤ p 0 ≤ 100 )( 1\le {p}_{0}\le 100),哈特曼数( 0 ≤ Ha ≤ 50 )( 0\le \text{Ha}\le 50),瑞利数( 1 , 000 ≤ Ra ≤ 40 , 000 )( 1,000\le \text{Ra}\le 40,000),以及磁参数( 0 ≤ M ≤ 50 )( 0\le M\le 50)。此外,我们的分析表明,努塞尔特数与纳米颗粒体积分数参数几乎呈线性相关,这一趋势在雷利数和磁参数值范围内都能观察到。我们注意到,仅 20% 的纳米粒子体积分数就能使努塞尔特数上升 62%,同时使系数 f Re 下降近 50%。这一研究框架为理解划定系统中磁性影响和热-水力行为之间错综复杂的相互作用奠定了坚实的基础。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信