利用OHAM研究混合纳米流体中熵的产生,并利用辐射现象建立随温度变化的导热模型

IF 1.8 4区 物理与天体物理 Q2 PHYSICS, MULTIDISCIPLINARY
Farwa Waseem, Muhammad Sohail, Nadia Sarhan, Emad Mahrous Awwad, Muhammad Jahangir Khan
{"title":"利用OHAM研究混合纳米流体中熵的产生,并利用辐射现象建立随温度变化的导热模型","authors":"Farwa Waseem, Muhammad Sohail, Nadia Sarhan, Emad Mahrous Awwad, Muhammad Jahangir Khan","doi":"10.1515/phys-2024-0059","DOIUrl":null,"url":null,"abstract":"This investigation takes into account the flow of a hybrid copper–molybdenum disulfide <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_001.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>(</m:mo> <m:mi mathvariant=\"normal\">Cu</m:mi> <m:mi mathvariant=\"normal\">–</m:mi> <m:msub> <m:mrow> <m:mi mathvariant=\"normal\">MoS</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:math> <jats:tex-math>\\left({\\rm{Cu}}{\\rm{\\mbox{--}}}{{\\rm{MoS}}}_{2})</jats:tex-math> </jats:alternatives> </jats:inline-formula>/water nanofluid across a plane flat surface that has been nonlinearly extended in lateral directions. Suitable boundary conditions are used to characterize the nonlinear variants in the velocity and temperature profile of the sheet. The innovative aspect of this work is to examine the impact of thermal conductivity on temperature and entropy across an extended surface using hybrid nanofluids. We obtain numerical techniques of modified boundary layer ordinary differential equations using the effective and reliable optimal homotopy analysis technique (OHAM). A graphic depiction of the influence of several parameters is shown. In this case, the hybrid model takes into account <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_002.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0.01</m:mn> </m:math> <jats:tex-math>0.01</jats:tex-math> </jats:alternatives> </jats:inline-formula> of copper <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_003.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mo>(</m:mo> <m:mi mathvariant=\"normal\">Cu</m:mi> <m:mo>)</m:mo> </m:math> <jats:tex-math>\\left({\\rm{Cu}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_004.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:mn>0.01</m:mn> </m:math> <jats:tex-math>0.01</jats:tex-math> </jats:alternatives> </jats:inline-formula> of molybdenum disulfide <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" xlink:href=\"graphic/j_phys-2024-0059_eq_005.png\"/> <m:math xmlns:m=\"http://www.w3.org/1998/Math/MathML\"> <m:msub> <m:mrow> <m:mo>(</m:mo> <m:mi mathvariant=\"normal\">MoS</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:math> <jats:tex-math>{({\\rm{MoS}}}_{2})</jats:tex-math> </jats:alternatives> </jats:inline-formula> nanoparticles within base fluid water. The second principle of thermodynamics is used to compute the irreversibility factor. The performance of nanofluid and hybrid nanofluid was compared for pivotal velocity, temperature profile, and entropy formation. The estimated skin friction and Nusselt number are the significant physical parameters. It can be observed that when the values of the stretching rate ratio and power index law increase, the skin friction increases, but it can have the opposite behavior compared to the Nusselt number.","PeriodicalId":48710,"journal":{"name":"Open Physics","volume":null,"pages":null},"PeriodicalIF":1.8000,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of OHAM to investigate entropy generation with a temperature-dependent thermal conductivity model in hybrid nanofluid using the radiation phenomenon\",\"authors\":\"Farwa Waseem, Muhammad Sohail, Nadia Sarhan, Emad Mahrous Awwad, Muhammad Jahangir Khan\",\"doi\":\"10.1515/phys-2024-0059\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This investigation takes into account the flow of a hybrid copper–molybdenum disulfide <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0059_eq_001.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>(</m:mo> <m:mi mathvariant=\\\"normal\\\">Cu</m:mi> <m:mi mathvariant=\\\"normal\\\">–</m:mi> <m:msub> <m:mrow> <m:mi mathvariant=\\\"normal\\\">MoS</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:math> <jats:tex-math>\\\\left({\\\\rm{Cu}}{\\\\rm{\\\\mbox{--}}}{{\\\\rm{MoS}}}_{2})</jats:tex-math> </jats:alternatives> </jats:inline-formula>/water nanofluid across a plane flat surface that has been nonlinearly extended in lateral directions. Suitable boundary conditions are used to characterize the nonlinear variants in the velocity and temperature profile of the sheet. The innovative aspect of this work is to examine the impact of thermal conductivity on temperature and entropy across an extended surface using hybrid nanofluids. We obtain numerical techniques of modified boundary layer ordinary differential equations using the effective and reliable optimal homotopy analysis technique (OHAM). A graphic depiction of the influence of several parameters is shown. In this case, the hybrid model takes into account <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0059_eq_002.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0.01</m:mn> </m:math> <jats:tex-math>0.01</jats:tex-math> </jats:alternatives> </jats:inline-formula> of copper <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0059_eq_003.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mo>(</m:mo> <m:mi mathvariant=\\\"normal\\\">Cu</m:mi> <m:mo>)</m:mo> </m:math> <jats:tex-math>\\\\left({\\\\rm{Cu}})</jats:tex-math> </jats:alternatives> </jats:inline-formula> and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0059_eq_004.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:mn>0.01</m:mn> </m:math> <jats:tex-math>0.01</jats:tex-math> </jats:alternatives> </jats:inline-formula> of molybdenum disulfide <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" xlink:href=\\\"graphic/j_phys-2024-0059_eq_005.png\\\"/> <m:math xmlns:m=\\\"http://www.w3.org/1998/Math/MathML\\\"> <m:msub> <m:mrow> <m:mo>(</m:mo> <m:mi mathvariant=\\\"normal\\\">MoS</m:mi> </m:mrow> <m:mrow> <m:mn>2</m:mn> </m:mrow> </m:msub> <m:mo>)</m:mo> </m:math> <jats:tex-math>{({\\\\rm{MoS}}}_{2})</jats:tex-math> </jats:alternatives> </jats:inline-formula> nanoparticles within base fluid water. The second principle of thermodynamics is used to compute the irreversibility factor. The performance of nanofluid and hybrid nanofluid was compared for pivotal velocity, temperature profile, and entropy formation. The estimated skin friction and Nusselt number are the significant physical parameters. It can be observed that when the values of the stretching rate ratio and power index law increase, the skin friction increases, but it can have the opposite behavior compared to the Nusselt number.\",\"PeriodicalId\":48710,\"journal\":{\"name\":\"Open Physics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.8000,\"publicationDate\":\"2024-07-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1515/phys-2024-0059\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1515/phys-2024-0059","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本研究考虑了混合二硫化钼铜(Cu - MoS 2)/水纳米流体在横向非线性扩展的平面上的流动。采用合适的边界条件来描述平面速度和温度曲线的非线性变化。这项工作的创新之处在于利用混合纳米流体研究热导率对延伸表面的温度和熵的影响。我们利用有效可靠的最优同调分析技术(OHAM)获得了修正边界层常微分方程的数值技术。图中显示了几个参数的影响。在本例中,混合模型考虑了基础流体水中 0.01 0.01 的铜(Cu)和 0.01 0.01 的二硫化钼(MoS 2 ){({\rm{MoS}}_{2}) 纳米粒子。热力学第二原理用于计算不可逆因子。比较了纳米流体和混合纳米流体在枢轴速度、温度曲线和熵形成方面的性能。估计的表皮摩擦力和努塞尔特数是重要的物理参数。可以看出,当拉伸率比和幂指数定律的值增大时,皮肤摩擦会增大,但与努塞尔特数相比,皮肤摩擦会有相反的行为。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilization of OHAM to investigate entropy generation with a temperature-dependent thermal conductivity model in hybrid nanofluid using the radiation phenomenon
This investigation takes into account the flow of a hybrid copper–molybdenum disulfide ( Cu MoS 2 ) \left({\rm{Cu}}{\rm{\mbox{--}}}{{\rm{MoS}}}_{2}) /water nanofluid across a plane flat surface that has been nonlinearly extended in lateral directions. Suitable boundary conditions are used to characterize the nonlinear variants in the velocity and temperature profile of the sheet. The innovative aspect of this work is to examine the impact of thermal conductivity on temperature and entropy across an extended surface using hybrid nanofluids. We obtain numerical techniques of modified boundary layer ordinary differential equations using the effective and reliable optimal homotopy analysis technique (OHAM). A graphic depiction of the influence of several parameters is shown. In this case, the hybrid model takes into account 0.01 0.01 of copper ( Cu ) \left({\rm{Cu}}) and 0.01 0.01 of molybdenum disulfide ( MoS 2 ) {({\rm{MoS}}}_{2}) nanoparticles within base fluid water. The second principle of thermodynamics is used to compute the irreversibility factor. The performance of nanofluid and hybrid nanofluid was compared for pivotal velocity, temperature profile, and entropy formation. The estimated skin friction and Nusselt number are the significant physical parameters. It can be observed that when the values of the stretching rate ratio and power index law increase, the skin friction increases, but it can have the opposite behavior compared to the Nusselt number.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Physics
Open Physics PHYSICS, MULTIDISCIPLINARY-
CiteScore
3.20
自引率
5.30%
发文量
82
审稿时长
18 weeks
期刊介绍: Open Physics is a peer-reviewed, open access, electronic journal devoted to the publication of fundamental research results in all fields of physics. The journal provides the readers with free, instant, and permanent access to all content worldwide; and the authors with extensive promotion of published articles, long-time preservation, language-correction services, no space constraints and immediate publication. Our standard policy requires each paper to be reviewed by at least two Referees and the peer-review process is single-blind.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信