{"title":"Is side branch embolization needed before endovascular aortic aneurysm repair to prevent type II endoleak?","authors":"","doi":"10.1016/j.diii.2024.04.001","DOIUrl":"10.1016/j.diii.2024.04.001","url":null,"abstract":"","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140870435","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Multiple abdominal arterial aneurysms in granulomatosis with polyangiitis","authors":"","doi":"10.1016/j.diii.2024.06.005","DOIUrl":"10.1016/j.diii.2024.06.005","url":null,"abstract":"","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141471763","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Impact factor, first quartile, CiteScore and other metrics","authors":"","doi":"10.1016/j.diii.2024.07.007","DOIUrl":"10.1016/j.diii.2024.07.007","url":null,"abstract":"","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141914292","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Molecular imaging for non-invasive risk stratification of renal masses","authors":"","doi":"10.1016/j.diii.2024.07.003","DOIUrl":"10.1016/j.diii.2024.07.003","url":null,"abstract":"<div><p>Anatomic imaging with contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) has long been the mainstay of renal mass characterization. However, those modalities are often unable to adequately characterize indeterminate, solid, enhancing renal masses – with some exceptions, such as the development of the clear-cell likelihood score on multi-parametric MRI. As such, molecular imaging approaches have gained traction as an alternative to anatomic imaging. Mitochondrial imaging with <sup>99m</sup>Tc-sestamibi single-photon emission computed tomography/CT is a cost-effective means of non-invasively identifying oncocytomas and other indolent renal masses. On the other end of the spectrum, carbonic anhydrase IX agents, most notably the monoclonal antibody girentuximab – which can be labeled with positron emission tomography radionuclides such as zirconium-89 – are effective at identifying renal masses that are likely to be aggressive clear cell renal cell carcinomas. Renal mass biopsy, which has a relatively high non-diagnostic rate and does not definitively characterize many oncocytic neoplasms, nonetheless may play an important role in any algorithm targeted to renal mass risk stratification. The combination of molecular imaging and biopsy in selected patients with other advanced imaging methods, such as artificial intelligence/machine learning and the abstraction of radiomics features, offers the optimal way forward for maximization of the information to be gained from risk stratification of indeterminate renal masses. With the proper application of those methods, inappropriately aggressive therapy for benign and indolent renal masses may be curtailed.</p></div>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761824","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Cécile Masson-Grehaigne, Mathilde Lafon, Jean Palussière, Laura Leroy, Benjamin Bonhomme, Eva Jambon, Antoine Italiano, Sophie Cousin, Amandine Crombé
{"title":"Single- and multi-site radiomics may improve overall survival prediction for patients with metastatic lung adenocarcinoma.","authors":"Cécile Masson-Grehaigne, Mathilde Lafon, Jean Palussière, Laura Leroy, Benjamin Bonhomme, Eva Jambon, Antoine Italiano, Sophie Cousin, Amandine Crombé","doi":"10.1016/j.diii.2024.07.005","DOIUrl":"https://doi.org/10.1016/j.diii.2024.07.005","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to assess whether single-site and multi-site radiomics could improve the prediction of overall survival (OS) of patients with metastatic lung adenocarcinoma compared to clinicopathological model.</p><p><strong>Materials and methods: </strong>Adults with metastatic lung adenocarcinoma, pretreatment whole-body contrast-enhanced computed tomography examinations, and performance status (WHO-PS) ≤ 2 were included in this retrospective single-center study, and randomly assigned to training and testing cohorts. Radiomics features (RFs) were extracted from all measurable lesions with volume ≥ 1 cm<sup>3</sup>. Radiomics prognostic scores based on the largest tumor (RPS<sub>largest</sub>) and the average RF values across all tumors per patient (RPS<sub>average</sub>) were developed in the training cohort using 5-fold cross-validated LASSO-penalized Cox regression. Intra-patient inter-tumor heterogeneity (IPITH) metrics were calculated to quantify the radiophenotypic dissimilarities among all tumors within each patient. A clinicopathological model was built in the training cohort using stepwise Cox regression and enriched with combinations of RPS<sub>average</sub>, RPS<sub>largest</sub> and IPITH. Models were compared with the concordance index in the independent testing cohort.</p><p><strong>Results: </strong>A total of 300 patients (median age: 63.7 years; 40.7% women; median OS, 16.3 months) with 1359 lesions were included (200 and 100 patients in the training and testing cohorts, respectively). The clinicopathological model included WHO-PS = 2 (hazard ratio [HR] = 3.26; P < 0.0001), EGFR, ALK, ROS1 or RET mutations (HR = 0.57; P = 0.0347), IVB stage (HR = 1.65; P = 0.0211), and liver metastases (HR = 1.47; P = 0.0670). In the testing cohort, RPS<sub>average</sub>, RPS<sub>largest</sub> and IPITH were associated with OS (HR = 85.50, P = 0.0038; HR = 18.83, P = 0.0082 and HR = 8.00, P = 0.0327, respectively). The highest concordance index was achieved with the combination of clinicopathological variables and RPS<sub>average</sub>, significantly better than that of the clinicopathological model (concordance index = 0.7150 vs. 0.695, respectively; P = 0.0049) CONCLUSION: Single-site and multi-site radiomics-based scores are associated with OS in patients with metastatic lung adenocarcinoma. RPS<sub>average</sub> improves the clinicopathological model.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142082364","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ha-Long Nguyen, Ricardo Holderbaum Do Amaral, Sophie Lerouge, An-Katrien De Roo, Fatemeh Zehtabi, Miikka Vikkula, Gilles Soulez
{"title":"Injectable chitosan hydrogel effectively controls lesion growth in a venous malformation murine model.","authors":"Ha-Long Nguyen, Ricardo Holderbaum Do Amaral, Sophie Lerouge, An-Katrien De Roo, Fatemeh Zehtabi, Miikka Vikkula, Gilles Soulez","doi":"10.1016/j.diii.2024.07.004","DOIUrl":"https://doi.org/10.1016/j.diii.2024.07.004","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose of this study was to evaluate the safety and efficacy of intralesional injection of chitosan hydrogel (CH) combined with sodium tetradecyl sulfate (STS) to sclerose and embolize venous malformations (VMs) by comparison with 3% STS foam and placebo in a mouse model.</p><p><strong>Materials and methods: </strong>Subcutaneous VMs were created by injecting HUVEC_TIE2-L914F cells, mixed with matrigel, into the back of athymic mice (Day [D] 0). After VM-like lesions were established at D10, 70 lesions were randomly assigned to one of six treatment groups (untreated, saline, 3% STS-foam, CH, 1% STS-CH, 3% STS-CH). For 3% STS-foam, the standard Tessari technique was performed. VMs were regularly evaluated every 2-3 days to measure lesion size until the time of collection at D30 (primary endpoint). At D30, VM lesions including the matrigel plugs were culled and evaluated by histological analysis to assess vessel size, chitosan distribution and endothelial expression. One-way analysis of variance (ANOVA) test was performed to compare quantitative variables with normal distribution, otherwise Kruskal-Wallis test followed by pairwise comparisons by a Wilcoxon rank sum test was performed.</p><p><strong>Results: </strong>All VMs were successfully punctured and injected. Six VMs injected with 3% STS-CH showed early skin ulceration with an extrusion of the matrigel plug and were excluded from final analysis. In the remaining 64 VMs, skin ulceration occurred on 26 plugs, resulting in the loss of three 3% STS-foam and one 1% STS-CH plugs. Both chitosan formulations effectively controlled growth of VMs by the end of follow-up compared to untreated or 3% STS-foam groups (P < 0.05). Vessel sizes were smaller with both CH formulations compared to untreated and saline groups (P < 0.05). Additionally, there were smaller vascular channels within the 1% STS-CH group compared to the 3% STS-foam group (P < 0.05).</p><p><strong>Conclusion: </strong>Chitosan's ability to control the growth of VMs suggests a promising therapeutic effect that outperforms the gold standard (STS-foam) on several variables.</p>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141879686","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"CT, MRI and PET/CT of adrenal schwannoma","authors":"","doi":"10.1016/j.diii.2024.07.006","DOIUrl":"10.1016/j.diii.2024.07.006","url":null,"abstract":"","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876372","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Detection and characterization of pancreatic lesion with artificial intelligence: The SFR 2023 artificial intelligence data challenge","authors":"","doi":"10.1016/j.diii.2024.07.002","DOIUrl":"10.1016/j.diii.2024.07.002","url":null,"abstract":"<div><h3>Purpose</h3><div>The purpose of the 2023 SFR data challenge was to invite researchers to develop artificial intelligence (AI) models to identify the presence of a pancreatic mass and distinguish between benign and malignant pancreatic masses on abdominal computed tomography (CT) examinations.</div></div><div><h3>Materials and methods</h3><div><span>Anonymized abdominal CT examinations acquired during the portal venous phase were collected from 18 French centers. Abdominal CT examinations were divided into three groups including CT examinations with no lesion, CT examinations with benign pancreatic mass, or CT examinations with malignant pancreatic mass. Each team included at least one radiologist, one data scientist, and one engineer. Pancreatic lesions were annotated by expert radiologists. CT examinations were distributed in balanced batches via a Health Data Hosting certified platform. Data were distributed into four batches, two for training, one for internal evaluation, and one for the external evaluation. Training used 83 % of the data from 14 centers and external evaluation used data from the other four centers. The metric (</span><em>i.e.</em>, final score) used to rank the participants was a weighted average of mean sensitivity, mean precision and mean area under the curve.</div></div><div><h3>Results</h3><div>A total of 1037 abdominal CT examinations were divided into two training sets (including 500 and 232 CT examinations), an internal evaluation set (including 139 CT examinations), and an external evaluation set (including 166 CT examinations). The training sets were distributed on September 7 and October 13, 2023, and evaluation sets on October 15, 2023. Ten teams with a total of 93 members participated to the data challenge, with the best final score being 0.72.</div></div><div><h3>Conclusion</h3><div>This SFR 2023 data challenge based on multicenter CT data suggests that the use of AI for pancreatic lesions detection is possible on real data, but the distinction between benign and malignant pancreatic lesions remains challenging.</div></div>","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141761823","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The role of MR imaging in ovarian tumor risk stratification","authors":"","doi":"10.1016/j.diii.2024.07.001","DOIUrl":"10.1016/j.diii.2024.07.001","url":null,"abstract":"","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Lalla Maria Yaacoubi, Philippe Soyer, Maxime Barat
{"title":"Cinematic rendering of mesenteric paraganglioma.","authors":"Lalla Maria Yaacoubi, Philippe Soyer, Maxime Barat","doi":"10.1016/j.diii.2024.06.007","DOIUrl":"https://doi.org/10.1016/j.diii.2024.06.007","url":null,"abstract":"","PeriodicalId":48656,"journal":{"name":"Diagnostic and Interventional Imaging","volume":null,"pages":null},"PeriodicalIF":4.9,"publicationDate":"2024-07-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141753063","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}