Joanne C Stonehouse, Lewis G Spurgin, Veronika N Laine, Mirte Bosse, Martien A M Groenen, Kees van Oers, Ben C Sheldon, Marcel E Visser, Jon Slate
{"title":"The genomics of adaptation to climate in European great tit (<i>Parus major</i>) populations","authors":"Joanne C Stonehouse, Lewis G Spurgin, Veronika N Laine, Mirte Bosse, Martien A M Groenen, Kees van Oers, Ben C Sheldon, Marcel E Visser, Jon Slate","doi":"10.1093/evlett/qrad043","DOIUrl":"https://doi.org/10.1093/evlett/qrad043","url":null,"abstract":"Abstract The recognition that climate change is occurring at an unprecedented rate means that there is increased urgency in understanding how organisms can adapt to a changing environment. Wild great tit (Parus major) populations represent an attractive ecological model system to understand the genomics of climate adaptation. They are widely distributed across Eurasia and they have been documented to respond to climate change. We performed a Bayesian genome-environment analysis, by combining local climate data with single nucleotide polymorphisms genotype data from 20 European populations (broadly spanning the species’ continental range). We found 36 genes putatively linked to adaptation to climate. Following an enrichment analysis of biological process Gene Ontology (GO) terms, we identified over-represented terms and pathways among the candidate genes. Because many different genes and GO terms are associated with climate variables, it seems likely that climate adaptation is polygenic and genetically complex. Our findings also suggest that geographical climate adaptation has been occurring since great tits left their Southern European refugia at the end of the last ice age. Finally, we show that substantial climate-associated genetic variation remains, which will be essential for adaptation to future changes.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135968894","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Partha Pratim Chakraborty, Louis R Nemzer, Rees Kassen
{"title":"Experimental evidence that network topology can accelerate the spread of beneficial mutations","authors":"Partha Pratim Chakraborty, Louis R Nemzer, Rees Kassen","doi":"10.1093/evlett/qrad047","DOIUrl":"https://doi.org/10.1093/evlett/qrad047","url":null,"abstract":"Abstract Whether and how the spatial arrangement of a population influences adaptive evolution has puzzled evolutionary biologists. Theoretical models make conflicting predictions about the probability that a beneficial mutation will become fixed in a population for certain topologies like stars, in which “leaf” populations are connected through a central “hub.” To date, these predictions have not been evaluated under realistic experimental conditions. Here, we test the prediction that topology can change the dynamics of fixation both in vitro and in silico by tracking the frequency of a beneficial mutant under positive selection as it spreads through networks of different topologies. Our results provide empirical support that meta-population topology can increase the likelihood that a beneficial mutation spreads, broaden the conditions under which this phenomenon is thought to occur, and points the way toward using network topology to amplify the effects of weakly favored mutations under directed evolution in industrial applications.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136212952","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kira E Delmore, Benjamin M Van Doren, Kristian Ullrich, Teja Curk, Henk P van der Jeugd, Miriam Liedvogel
{"title":"Structural genomic variation and migratory behavior in a wild songbird","authors":"Kira E Delmore, Benjamin M Van Doren, Kristian Ullrich, Teja Curk, Henk P van der Jeugd, Miriam Liedvogel","doi":"10.1093/evlett/qrad040","DOIUrl":"https://doi.org/10.1093/evlett/qrad040","url":null,"abstract":"Abstract Structural variants (SVs) are a major source of genetic variation; and descriptions in natural populations and connections with phenotypic traits are beginning to accumulate in the literature. We integrated advances in genomic sequencing and animal tracking to begin filling this knowledge gap in the Eurasian blackcap. Specifically, we (a) characterized the genome-wide distribution, frequency, and overall fitness effects of SVs using haplotype-resolved assemblies for 79 birds, and (b) used these SVs to study the genetics of seasonal migration. We detected &gt;15 K SVs. Many SVs overlapped repetitive regions and exhibited evidence of purifying selection suggesting they have overall deleterious effects on fitness. We used estimates of genomic differentiation to identify SVs exhibiting evidence of selection in blackcaps with different migratory strategies. Insertions and deletions dominated the SVs we identified and were associated with genes that are either directly (e.g., regulatory motifs that maintain circadian rhythms) or indirectly (e.g., through immune response) related to migration. We also broke migration down into individual traits (direction, distance, and timing) using existing tracking data and tested if genetic variation at the SVs we identified could account for phenotypic variation at these traits. This was only the case for 1 trait—direction—and 1 specific SV (a deletion on chromosome 27) accounted for much of this variation. Our results highlight the evolutionary importance of SVs in natural populations and provide insight into the genetic basis of seasonal migration.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253245","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Selim Bouaouina, Yannick Chittaro, Yvonne Willi, Kay Lucek
{"title":"Asynchronous life cycles contribute to reproductive isolation between two Alpine butterflies","authors":"Selim Bouaouina, Yannick Chittaro, Yvonne Willi, Kay Lucek","doi":"10.1093/evlett/qrad046","DOIUrl":"https://doi.org/10.1093/evlett/qrad046","url":null,"abstract":"Abstract Geographic isolation often leads to the emergence of distinct genetic lineages that are at least partially reproductively isolated. Zones of secondary contact between such lineages are natural experiments that allow investigation of how reproductive isolation evolves and co-existence is maintained. While temporal isolation through allochrony has been suggested to promote reproductive isolation in sympatry, its potential for isolation upon secondary contact is far less understood. Sampling two contact zones of a pair of mainly allopatric Alpine butterflies over several years and taking advantage of museum samples, we show that the contact zones have remained geographically stable over several decades. Furthermore, they seem to be maintained by the asynchronous life cycles of the two butterflies, with one reaching adulthood primarily in even and the other primarily in odd years. Genomic inferences document that allochrony is leaky and that gene flow from allopatric sites scales with the degree of geographic isolation. Overall, we show that allochrony has the potential to contribute to the maintenance of secondary contact zones of lineages that diverged in allopatry.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135253095","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Jian-Feng Huang, Jenjira Fungjanthuek, Ming-Bo Chen, Gui-Xiang Liu, Yi-Yi Dong, Yan-Qiong Peng, Bo Wang, Simon T Segar
{"title":"Pollinator sharing and hybridization in a pair of dioecious figs sheds light on the pathways to speciation","authors":"Jian-Feng Huang, Jenjira Fungjanthuek, Ming-Bo Chen, Gui-Xiang Liu, Yi-Yi Dong, Yan-Qiong Peng, Bo Wang, Simon T Segar","doi":"10.1093/evlett/qrad045","DOIUrl":"https://doi.org/10.1093/evlett/qrad045","url":null,"abstract":"Abstract The dynamics and processes underlying the codiversification of plant–pollinator interactions are of great interest to researchers of biodiversity and evolution. Cospeciation is generally considered a key process driving the diversity of figs and their pollinating wasps. Groups of closely related figs pollinated by separate wasps occur frequently and represent excellent opportunities to study ongoing diversification in this textbook mutualism. We study two closely related sympatric dioecious figs (Ficus heterostyla and Ficus squamosa) in Xishuangbanna, southwest China, and aim to document what is likely to be the final stages of speciation between these species using a combination of trait data and experimental manipulation. Volatile profiles at the receptive phase, crucial for attracting pollinators, were analyzed. In total, 37 and 29 volatile compounds were identified from receptive F. heterostyla and F. squamosa figs, respectively. Despite significant interspecific dissimilarity, 25 compounds were shared. Ovipositor lengths lie well within range required for access to heterospecific ovules, facilitating hybridization. Cross introduction of wasps into figs was conducted and hybrid seeds were generated for all donor/recipient combinations. F. heterostyla wasps produce adult offspring in F. squamosa figs. While F. squamosa wasps induce gall development in F. heterostyla figs and their offspring fail to mature in synchrony with their novel host. We record limited geographic barriers, minimal volatile dissimilarity, compatible morphology, complementary reproductive phenologies, and the production of hybrid seeds and wasp offspring. These findings suggest ongoing wasp specialization and reproductive isolation, potentially applicable to other related fig species.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135252688","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ondi L Crino, Russell Bonduriansky, Lynn B Martin, Daniel W A Noble
{"title":"A conceptual framework for understanding stress-induced physiological and transgenerational effects on population responses to climate change","authors":"Ondi L Crino, Russell Bonduriansky, Lynn B Martin, Daniel W A Noble","doi":"10.1093/evlett/qrad037","DOIUrl":"https://doi.org/10.1093/evlett/qrad037","url":null,"abstract":"Abstract Organisms are experiencing higher average temperatures and greater temperature variability because of anthropogenic climate change. Some populations respond to changes in temperature by shifting their ranges or adjusting their phenotypes via plasticity and/or evolution, while others go extinct. Predicting how populations will respond to temperature changes is challenging because extreme and unpredictable climate changes will exert novel selective pressures. For this reason, there is a need to understand the physiological mechanisms that regulate organismal responses to temperature changes. In vertebrates, glucocorticoid hormones mediate physiological and behavioral responses to environmental stressors and thus are likely to play an important role in how vertebrates respond to global temperature changes. Glucocorticoids have cascading effects that influence the phenotype and fitness of individuals, and some of these effects can be transmitted to offspring via trans- or intergenerational effects. Consequently, glucocorticoid-mediated responses could affect populations and could even be a powerful driver of rapid evolutionary change. Here, we present a conceptual framework that outlines how temperature changes due to global climate change could affect population persistence via glucocorticoid responses within and across generations (via epigenetic modifications). We briefly review glucocorticoid physiology, the interactions between environmental temperatures and glucocorticoid responses, and the phenotypic consequences of glucocorticoid responses within and across generations. We then discuss possible hypotheses for how glucocorticoid-mediated phenotypic effects might impact fitness and population persistence via evolutionary change. Finally, we pose pressing questions to guide future research. Understanding the physiological mechanisms that underpin the responses of vertebrates to elevated temperatures will help predict population-level responses to the changing climates we are experiencing.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135133154","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kuangyi Xu, Maria R Servedio, Sarah K Winnicki, Csaba Moskat, Jeffrey P Hoover, Abbigail M Turner, Mark E Hauber
{"title":"Host learning selects for the coevolution of greater egg mimicry and narrower antiparasitic egg-rejection thresholds","authors":"Kuangyi Xu, Maria R Servedio, Sarah K Winnicki, Csaba Moskat, Jeffrey P Hoover, Abbigail M Turner, Mark E Hauber","doi":"10.1093/evlett/qrad041","DOIUrl":"https://doi.org/10.1093/evlett/qrad041","url":null,"abstract":"Abstract Egg rejection is an effective and widespread antiparasitic defense to eliminate foreign eggs from the nests of hosts of brood parasitic birds. Several lines of observational and critical experimental evidence support a role for learning by hosts in the recognition of parasitic versus own eggs; specifically, individual hosts that have had prior or current experience with brood parasitism are more likely to reject foreign eggs. Here we confirm experimentally the role of prior experience in altering subsequent egg-rejection decisions in the American robin Turdus migratorius, a free-living host species of an obligate brood parasite, the brown-headed cowbird Molothrus ater. We then model the coevolutionary trajectory of both the extent of mimicry of host eggs by parasitic eggs and the host’s egg rejection thresholds in response to an increasing role of learning in egg recognition. Critically, with more learning, we see the evolution of both narrower (more discriminating) rejection thresholds in hosts and greater egg mimicry in parasites. Increasing host clutch size (number of eggs/nest) and increasing parasite load (parasitism rate) also have narrowing effects on the egg-rejection threshold. Together, these results suggest that learning from prior experience with egg rejection may play an important role in the coevolution of egg-mimetic lineages of brood parasites and the refined egg rejection defenses of hosts.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136235983","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Melanie Ghoul, Sandra B Andersen, Rasmus L Marvig, Helle K Johansen, Lars Jelsbak, Søren Molin, Gabriel Perron, Ashleigh S Griffin
{"title":"Long-term evolution of antibiotic tolerance in <i>Pseudomonas aeruginosa</i> lung infections","authors":"Melanie Ghoul, Sandra B Andersen, Rasmus L Marvig, Helle K Johansen, Lars Jelsbak, Søren Molin, Gabriel Perron, Ashleigh S Griffin","doi":"10.1093/evlett/qrad034","DOIUrl":"https://doi.org/10.1093/evlett/qrad034","url":null,"abstract":"Abstract Pathogenic bacteria respond to antibiotic pressure with the evolution of resistance but survival can also depend on their ability to tolerate antibiotic treatment, known as tolerance. While a variety of resistance mechanisms and underlying genetics are well characterized in vitro and in vivo, an understanding of the evolution of tolerance, and how it interacts with resistance in situ is lacking. We assayed for tolerance and resistance in isolates of Pseudomonas aeruginosa from chronic cystic fibrosis lung infections spanning up to 40 years of evolution, with 3 clinically relevant antibiotics: meropenem, ciprofloxacin, and tobramycin. We present evidence that tolerance is under positive selection in the lung and that it can act as an evolutionary stepping stone to resistance. However, by examining evolutionary patterns across multiple patients in different clone types, a key result is that the potential for an association between the evolution of resistance and tolerance is not inevitable, and difficult to predict.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"136375723","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Rahia Mashoodh, Angela T Trowsdale, Andrea Manica, Rebecca M Kilner
{"title":"Parental care shapes the evolution of molecular genetic variation","authors":"Rahia Mashoodh, Angela T Trowsdale, Andrea Manica, Rebecca M Kilner","doi":"10.1093/evlett/qrad039","DOIUrl":"https://doi.org/10.1093/evlett/qrad039","url":null,"abstract":"Abstract Cooperative social behaviors, such as parental care, have long been hypothesized to relax selection leading to the accumulation of genetic variation in populations. Although the idea has been discussed for decades, there has been relatively little experimental work to investigate how social behavior contributes to genetic variation in populations. Here, we investigate how parental care can shape molecular genetic variation in the subsocial insect, Nicrophorus vespilloides. Using whole-genome sequencing of populations that had evolved in the presence or absence of parental care for 30 generations, we show that parental care maintains levels of standing genetic variation. In contrast, under a harsh environment without care, strong directional selection caused a reduction in genetic variation. Furthermore, we show that adaptation to the loss of care is associated with genetic divergence between populations at loci related to stress, morphological development, and transcriptional regulation. These data reveal how social behavior is linked to the genetic processes that shape and maintain genetic diversity within populations, and provides rare empirical evidence for an old hypothesis.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254503","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Samuel P Slowinski, JaeHoon Cho, McKenna J Penley, Laura W Alexander, Arielle B Greenberg, Sathvik R Namburar, Levi T Morran
{"title":"High parasite virulence necessary for the maintenance of host outcrossing via parasite-mediated selection","authors":"Samuel P Slowinski, JaeHoon Cho, McKenna J Penley, Laura W Alexander, Arielle B Greenberg, Sathvik R Namburar, Levi T Morran","doi":"10.1093/evlett/qrad036","DOIUrl":"https://doi.org/10.1093/evlett/qrad036","url":null,"abstract":"Abstract Biparental sex is widespread in nature, yet costly relative to uniparental reproduction. It is generally unclear why self-fertilizing or asexual lineages do not readily invade outcrossing populations. The Red Queen hypothesis predicts that coevolving parasites can prevent self-fertilizing or asexual lineages from invading outcrossing host populations. However, only highly virulent parasites are predicted to maintain outcrossing, which may limit the general applicability of the Red Queen hypothesis. Here, we tested whether the ability of coevolving parasites to prevent invasion of self-fertilization within outcrossing host populations was dependent on parasite virulence. We introduced wild-type Caenorhabditis elegans hermaphrodites, capable of both self-fertilization and outcrossing, into C. elegans populations fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed for 24 host generations to one of four strains of Serratia marcescens parasites that varied in virulence, under three treatments: a heat-killed (control, noninfectious) parasite treatment, a fixed-genotype (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. As predicted, self-fertilization invaded C. elegans host populations in the control and fixed-parasite treatments, regardless of parasite virulence. In the copassaged treatment, selfing invaded host populations coevolving with low- to mid-virulence strains, but remained rare in hosts coevolving with highly virulent bacterial strains. Therefore, we found that only highly virulent coevolving parasites can impede the invasion of selfing.","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"135254277","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}