抗生素耐药性改变了铜绿假单胞菌入侵呼吸道微生物群细菌的能力。

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-06-30 eCollection Date: 2024-09-01 DOI:10.1093/evlett/qrae030
Selina Lindon, Sarah Shah, Danna R Gifford, Cédric Lood, Maria A Gomis Font, Divjot Kaur, Antonio Oliver, R Craig MacLean, Rachel M Wheatley
{"title":"抗生素耐药性改变了铜绿假单胞菌入侵呼吸道微生物群细菌的能力。","authors":"Selina Lindon, Sarah Shah, Danna R Gifford, Cédric Lood, Maria A Gomis Font, Divjot Kaur, Antonio Oliver, R Craig MacLean, Rachel M Wheatley","doi":"10.1093/evlett/qrae030","DOIUrl":null,"url":null,"abstract":"<p><p>The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen <i>Pseudomonas aeruginosa</i> and the respiratory microbiome as our model system. We measure the ability of <i>P. aeruginosa</i> spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to <i>P. aeruginosa</i> invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of <i>P. aeruginosa</i> to invade. The directionality of this help or hindrance depends on both <i>P. aeruginosa</i> genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of <i>P. aeruginosa</i> into <i>Staphylococcus lugdunensis</i>, yet impair invasion into <i>Rothia mucilaginosa</i> and <i>Staphylococcus epidermidis</i>. <i>Streptococcus</i> species provide the strongest resistance to <i>P. aeruginosa</i> invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in <i>P. aeruginosa</i> can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"8 5","pages":"735-747"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424078/pdf/","citationCount":"0","resultStr":"{\"title\":\"Antibiotic resistance alters the ability of <i>Pseudomonas aeruginosa</i> to invade bacteria from the respiratory microbiome.\",\"authors\":\"Selina Lindon, Sarah Shah, Danna R Gifford, Cédric Lood, Maria A Gomis Font, Divjot Kaur, Antonio Oliver, R Craig MacLean, Rachel M Wheatley\",\"doi\":\"10.1093/evlett/qrae030\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen <i>Pseudomonas aeruginosa</i> and the respiratory microbiome as our model system. We measure the ability of <i>P. aeruginosa</i> spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to <i>P. aeruginosa</i> invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of <i>P. aeruginosa</i> to invade. The directionality of this help or hindrance depends on both <i>P. aeruginosa</i> genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of <i>P. aeruginosa</i> into <i>Staphylococcus lugdunensis</i>, yet impair invasion into <i>Rothia mucilaginosa</i> and <i>Staphylococcus epidermidis</i>. <i>Streptococcus</i> species provide the strongest resistance to <i>P. aeruginosa</i> invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in <i>P. aeruginosa</i> can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"8 5\",\"pages\":\"735-747\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11424078/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrae030\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/9/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae030","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/9/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

细菌病原体中抗生素耐药性的出现和传播是一个全球性的健康威胁。一个重要的未解之谜是抗生素耐药性如何影响病原体入侵宿主相关微生物组的能力。在这里,我们以机会性细菌病原体铜绿假单胞菌和呼吸道微生物组为模型系统,研究抗生素耐药性如何影响细菌病原体入侵微生物组细菌的能力。我们通过一种试验来测量铜绿假单胞菌自发抗生素突变体入侵预先建立的呼吸道共生微生物培养物的能力,从而将特定的抗药性突变与入侵能力的变化联系起来。虽然呼吸道共生微生物往往会对铜绿微囊桿菌的入侵提供一定程度的抵抗力,但抗生素抗性是一把双刃剑,它既可以帮助铜绿微囊桿菌入侵,也可以阻碍铜绿微囊桿菌入侵。这种帮助或阻碍的方向性取决于铜绿假单胞菌的基因型和呼吸道微生物的特性。研究表明,参与多药外排泵调节的基因中的特异性抗性突变会促进铜绿假单胞菌侵入卢格杜恩葡萄球菌,但却会阻碍其侵入粘膜罗氏菌和表皮葡萄球菌。链球菌对铜绿假单胞菌的入侵具有最强的抵抗力,而且这种抵抗力不受抗生素耐药性基因型的影响。我们的研究表明,铜绿假单胞菌抗生素耐药性增强的突变代价如何在很大程度上取决于群落环境。我们建议,操纵微生物组的尝试应侧重于促进共生菌的生长,这些共生菌可以增加与抗生素耐药性相关的适应性成本,并对野生型和抗生素耐药性病原体菌株产生强有力的抑制作用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Antibiotic resistance alters the ability of Pseudomonas aeruginosa to invade bacteria from the respiratory microbiome.

The emergence and spread of antibiotic resistance in bacterial pathogens is a global health threat. One important unanswered question is how antibiotic resistance influences the ability of a pathogen to invade the host-associated microbiome. Here we investigate how antibiotic resistance impacts the ability of a bacterial pathogen to invade bacteria from the microbiome, using the opportunistic bacterial pathogen Pseudomonas aeruginosa and the respiratory microbiome as our model system. We measure the ability of P. aeruginosa spontaneous antibiotic-resistant mutants to invade pre-established cultures of commensal respiratory microbes in an assay that allows us to link specific resistance mutations with changes in invasion ability. While commensal respiratory microbes tend to provide some degree of resistance to P. aeruginosa invasion, antibiotic resistance is a double-edged sword that can either help or hinder the ability of P. aeruginosa to invade. The directionality of this help or hindrance depends on both P. aeruginosa genotype and respiratory microbe identity. Specific resistance mutations in genes involved in multidrug efflux pump regulation are shown to facilitate the invasion of P. aeruginosa into Staphylococcus lugdunensis, yet impair invasion into Rothia mucilaginosa and Staphylococcus epidermidis. Streptococcus species provide the strongest resistance to P. aeruginosa invasion, and this is maintained regardless of antibiotic resistance genotype. Our study demonstrates how the cost of mutations that provide enhanced antibiotic resistance in P. aeruginosa can crucially depend on community context. We suggest that attempts to manipulate the microbiome should focus on promoting the growth of commensals that can increase the fitness costs associated with antibiotic resistance and provide robust inhibition of both wildtype and antibiotic-resistant pathogen strains.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信