裂变酵母中立方体细胞填充的多细胞实验进化。

IF 3.4 1区 生物学 Q2 EVOLUTIONARY BIOLOGY
Evolution Letters Pub Date : 2024-06-14 eCollection Date: 2024-10-01 DOI:10.1093/evlett/qrae024
Rozenn M Pineau, Penelope C Kahn, Dung T Lac, Tom E R Belpaire, Mia G Denning, Whitney Wong, William C Ratcliff, G Ozan Bozdag
{"title":"裂变酵母中立方体细胞填充的多细胞实验进化。","authors":"Rozenn M Pineau, Penelope C Kahn, Dung T Lac, Tom E R Belpaire, Mia G Denning, Whitney Wong, William C Ratcliff, G Ozan Bozdag","doi":"10.1093/evlett/qrae024","DOIUrl":null,"url":null,"abstract":"<p><p>The evolution of multicellularity represents a major transition in life's history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell-cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical <i>Schizosaccharomyces pombe</i> yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the <i>ace2</i> gene, preventing daughter cell separation after division. Remarkably, <i>ace2</i> mutations also underlie the transition to multicellularity in <i>Saccharomyces cerevisiae</i> and <i>Candida glabrata</i>, lineages that last shared a common ancestor <math><mo>></mo></math> 300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.</p>","PeriodicalId":48629,"journal":{"name":"Evolution Letters","volume":"8 5","pages":"695-704"},"PeriodicalIF":3.4000,"publicationDate":"2024-06-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827335/pdf/","citationCount":"0","resultStr":"{\"title\":\"Experimental evolution of multicellularity via cuboidal cell packing in fission yeast.\",\"authors\":\"Rozenn M Pineau, Penelope C Kahn, Dung T Lac, Tom E R Belpaire, Mia G Denning, Whitney Wong, William C Ratcliff, G Ozan Bozdag\",\"doi\":\"10.1093/evlett/qrae024\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><p>The evolution of multicellularity represents a major transition in life's history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell-cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical <i>Schizosaccharomyces pombe</i> yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the <i>ace2</i> gene, preventing daughter cell separation after division. Remarkably, <i>ace2</i> mutations also underlie the transition to multicellularity in <i>Saccharomyces cerevisiae</i> and <i>Candida glabrata</i>, lineages that last shared a common ancestor <math><mo>></mo></math> 300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.</p>\",\"PeriodicalId\":48629,\"journal\":{\"name\":\"Evolution Letters\",\"volume\":\"8 5\",\"pages\":\"695-704\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-06-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11827335/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Evolution Letters\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://doi.org/10.1093/evlett/qrae024\",\"RegionNum\":1,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2024/10/1 0:00:00\",\"PubModel\":\"eCollection\",\"JCR\":\"Q2\",\"JCRName\":\"EVOLUTIONARY BIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Evolution Letters","FirstCategoryId":"99","ListUrlMain":"https://doi.org/10.1093/evlett/qrae024","RegionNum":1,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2024/10/1 0:00:00","PubModel":"eCollection","JCR":"Q2","JCRName":"EVOLUTIONARY BIOLOGY","Score":null,"Total":0}
引用次数: 0

摘要

多细胞生物的进化代表了生命史上的一个重大转变,使复杂生物体得以出现。多细胞群体可以通过多种发育模式进化,但一个共同的步骤是在分裂后形成永久细胞-细胞附着物。出现的多细胞形态特征对新生多细胞谱系的后续进化具有深远的影响,但很少有先前的工作直接研究这些动力学。在这里,我们研究了一种广泛但尚未充分研究的新兴多细胞形态:立方堆积。在整个生命之树中,灭绝的和现存的多细胞生物已经进化成球状细胞分裂但仍然附着在一起的群体,形成大约立方的亚单位。为了实验研究立方体细胞堆积的进化,我们在单细胞球形裂糖酵母中使用沉降选择来支持简单多细胞的进化。具有立方体组织的多细胞集群迅速进化,取代了单细胞祖先。这些集群显示了个体进化转变的关键特征:群体拥有由物理断裂驱动的突发性生命周期,群体规模是可遗传的,它们通过多细胞适应对群体水平的选择做出反应。在5个谱系中,2个群体的形成是由ace2基因突变驱动的,这阻止了分裂后的子细胞分离。值得注意的是,ace2突变也是酿酒酵母菌和心念珠菌向多细胞过渡的基础,这两个谱系在3亿年前拥有共同的祖先。我们的研究结果提供了深入了解立方体细胞包装的进化,这是一种未被充分研究的多细胞形态,并强调了真菌向多细胞个体过渡的深度趋同潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Experimental evolution of multicellularity via cuboidal cell packing in fission yeast.

The evolution of multicellularity represents a major transition in life's history, enabling the rise of complex organisms. Multicellular groups can evolve through multiple developmental modes, but a common step is the formation of permanent cell-cell attachments after division. The characteristics of the multicellular morphology that emerges have profound consequences for the subsequent evolution of a nascent multicellular lineage, but little prior work has investigated these dynamics directly. Here, we examine a widespread yet understudied emergent multicellular morphology: cuboidal packing. Extinct and extant multicellular organisms across the tree of life have evolved to form groups in which spherical cells divide but remain attached, forming approximately cubic subunits. To experimentally investigate the evolution of cuboidal cell packing, we used settling selection to favor the evolution of simple multicellularity in unicellular, spherical Schizosaccharomyces pombe yeast. Multicellular clusters with cuboidal organization rapidly evolved, displacing the unicellular ancestor. These clusters displayed key hallmarks of an evolutionary transition in individuality: groups possess an emergent life cycle driven by physical fracture, group size is heritable, and they respond to group-level selection via multicellular adaptation. In 2 out of 5 lineages, group formation was driven by mutations in the ace2 gene, preventing daughter cell separation after division. Remarkably, ace2 mutations also underlie the transition to multicellularity in Saccharomyces cerevisiae and Candida glabrata, lineages that last shared a common ancestor > 300 million years ago. Our results provide insight into the evolution of cuboidal cell packing, an understudied multicellular morphology, and highlight the deeply convergent potential for a transition to multicellular individuality within fungi.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Evolution Letters
Evolution Letters EVOLUTIONARY BIOLOGY-
CiteScore
13.00
自引率
2.00%
发文量
35
审稿时长
10 weeks
期刊介绍: Evolution Letters publishes cutting-edge new research in all areas of Evolutionary Biology. Available exclusively online, and entirely open access, Evolution Letters consists of Letters - original pieces of research which form the bulk of papers - and Comments and Opinion - a forum for highlighting timely new research ideas for the evolutionary community.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信