International Soil and Water Conservation Research最新文献

筛选
英文 中文
Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China 西南岩溶槽谷土壤团聚体稳定性和土壤抗侵蚀性对不同基岩地层倾角和土地利用类型的响应
IF 7.3 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-07 DOI: 10.1016/j.iswcr.2023.09.002
Fengling Gan , Hailong Shi , Junfei Gou , Linxing Zhang , Quanhou Dai , Youjin Yan
{"title":"Responses of soil aggregate stability and soil erosion resistance to different bedrock strata dip and land use types in the karst trough valley of Southwest China","authors":"Fengling Gan ,&nbsp;Hailong Shi ,&nbsp;Junfei Gou ,&nbsp;Linxing Zhang ,&nbsp;Quanhou Dai ,&nbsp;Youjin Yan","doi":"10.1016/j.iswcr.2023.09.002","DOIUrl":"10.1016/j.iswcr.2023.09.002","url":null,"abstract":"<div><p>Soil aggregate stability is an important index that reflects soil quality and anti-erosion ability and strongly affects soil processes and functions. Bedrock strata dips (dip and anti-dip slopes) and land use types primarily influence soil aggregate stability, whereas the detailed mechanisms are unclear in karst trough valley. Therefore, to explore the effects of bedrock strata dip and land use type on soil aggregate stability in karst trough valleys, soils were collected from five major land use types (abandoned land, grassland, pepper fields, corn fields and forest) on dip and anti-dip slopes. The soil was fractionated into macroaggregates and microaggrates using dry and wet sieving analysis. The soil particle size distributions in the macroaggregates and microaggregates were measured in conventional laboratories. The results showed significant differences in soil aggregate stability among different bedrock strata dips, slope positions, and land use types (<em>P</em> &lt; 0.05). The variation ranges of macroaggregates and microaggregates in the pepper fields of the dip slope were higher than those on the anti-dip slope. Comparing all land use types, the forest of the anti-dip slope had &gt;0.25 mm water-stable aggregates (85.31%) and mean weight diameter (2.67 mm) on the upper slope compared to that in the other slope positions of the dip slope. In addition, the dip slope had a higher percentage of aggregate destruction (35.57%) than the anti-dip slope (29.81%), and the soil erodibility factor value of the natural forest of the dip/anti-dip slope was significantly lower than that of the other land use types (<em>P</em> &lt; 0.05). When the content of large macroaggregates was larger, the soil macroaggregate weight was greater. When the failure rate of the soil aggregates was lower, the stability of the soil structure was better. Overall, these results suggest that natural forests can significantly improve the stability of soil aggregates, thereby improving soil erosion resistance. Therefore, natural recovery measures should be implemented on dip/anti-dip slopes of karst trough valleys.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 684-696"},"PeriodicalIF":7.3,"publicationDate":"2023-09-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000722/pdfft?md5=7828eea443208fcde24a365f57bb4d7d&pid=1-s2.0-S2095633923000722-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46017582","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Comment on “Assessing gully erosion and rehabilitation using multi temporal LiDAR DEMs: Case study from the Great Barrier Reef catchments, Australia” by Khan et al., 2023 Khan等人对“使用多时相激光雷达DEM评估冲沟侵蚀和修复:澳大利亚大堡礁集水区的案例研究”的评论,2023
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-05 DOI: 10.1016/j.iswcr.2023.09.001
James S. Daley, Andrew P. Brooks, John R. Spencer
{"title":"Comment on “Assessing gully erosion and rehabilitation using multi temporal LiDAR DEMs: Case study from the Great Barrier Reef catchments, Australia” by Khan et al., 2023","authors":"James S. Daley,&nbsp;Andrew P. Brooks,&nbsp;John R. Spencer","doi":"10.1016/j.iswcr.2023.09.001","DOIUrl":"10.1016/j.iswcr.2023.09.001","url":null,"abstract":"<div><p>Geomorphic change detection (GCD) using high resolution topographic data can provide important insights into geomorphological systems. However, considerations must first be given to the mechanisms and dynamics producing landscape change when considering an appropriate experimental design. Khan et al. (2023) investigate gully erosion rates and processes in different untreated and rehabilitated gullies using multi-temporal aerial lidar survey (ALS) data. However, an inappropriate time interval between sampling, a lack of uncertainty measures and lack of baseline monitoring survey data lead them to arrive at incorrect conclusions. Additional data is presented from the same field sites, which demonstrate gully sediment losses have been underestimated by at least 330% and potentially over an order of magnitude. A number of critical shortcomiongs of the paper are outlined. Insufficient time intervals between data collection have led to a lack of detection of some sediment transport processes. Earthworks associated with gully rehabilitation have been conflated with geomorphic change, as no post-construction baseline data was collected. A lack of post-construction baseline data for this analysis means ongoing erosion and deposition cannot be resolved in the rehabilitated gully landscape. Given these errors in approach, discussions of gully geomorphic processes, erosion mechanisms and evaluations of rehabilitation efforts are unsupported, overstated and inaccurate. This has important implications for land management efforts and planning as well ongoing research on alluvial gully erosion, which is largely overlooked by Khan et al. (2023).</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 2","pages":"Pages 481-486"},"PeriodicalIF":6.4,"publicationDate":"2023-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000734/pdfft?md5=2a4eeaf0e2e82b6ebfb37210bdad0bda&pid=1-s2.0-S2095633923000734-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43605647","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Watershed management, groundwater recharge and drought resilience: An integrated approach to adapt to rainfall variability in northern Ethiopia 流域管理、地下水补给和抗旱能力:适应埃塞俄比亚北部降雨变化的综合方法
IF 7.3 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-04 DOI: 10.1016/j.iswcr.2023.08.009
Kifle Woldearegay , Berhane Grum , Rudi Hessel , Frank van Steenbergen , Luuk Fleskens , Eyasu Yazew , Lulseged Tamene , Kindu Mekonnen , Teklay Reda , Mulu Haftu
{"title":"Watershed management, groundwater recharge and drought resilience: An integrated approach to adapt to rainfall variability in northern Ethiopia","authors":"Kifle Woldearegay ,&nbsp;Berhane Grum ,&nbsp;Rudi Hessel ,&nbsp;Frank van Steenbergen ,&nbsp;Luuk Fleskens ,&nbsp;Eyasu Yazew ,&nbsp;Lulseged Tamene ,&nbsp;Kindu Mekonnen ,&nbsp;Teklay Reda ,&nbsp;Mulu Haftu","doi":"10.1016/j.iswcr.2023.08.009","DOIUrl":"10.1016/j.iswcr.2023.08.009","url":null,"abstract":"<div><p>Rainfall variability coupled with poor land and water management is contributing to food insecurity in many sub-Saharan African countries such as Ethiopia. To address such challenges, various efforts have been implemented in Ethiopia. The objective of this study was to evaluate the long-term impacts of different soil and water conservation and water harvesting interventions on groundwater and drought resilience of the Gule watershed, northern Ethiopia. The study involved: (i) documentation of the approaches followed and the technologies implemented in Gule since the 1990s, (ii) monitoring the hydrological effects of the interventions for ten years, and (iii) evaluation of the effects of the interventions on groundwater (level and quality), spring discharge and suspended sediment concentration (SSC) in runoff. Results showed that interventions were implemented at different stages and scales. As a result of the interventions, the watershed was transformed into a landscape resilient to rainfall variability: (a) dry shallow groundwater wells have become productive and the level of water in wells has raised, (b) the groundwater quality has improved, (c) SSC in high floods has reduced by up to 65%, (d) discharge of existing springs has increased by up to 73% and new springs have started to emerge. Due to improved water availability, irrigated land has increased from less than 3.5 ha before 2002 to 166 ha in 2019. Communities have remained water-secure during an extreme drought in 2015/2016. Implementation of watershed management practices has transformed the landscape to be resilient to rainfall variability in a semi-arid environment: a lesson for adaptation to climate variability and change in similar environments.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"12 3","pages":"Pages 663-683"},"PeriodicalIF":7.3,"publicationDate":"2023-09-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2095633923000710/pdfft?md5=fe37091e5a510d92e76b107ff1b04be2&pid=1-s2.0-S2095633923000710-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49254560","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Vegetation characteristics and soil properties in grazing exclusion areas of the Inner Mongolia desert steppe 内蒙古荒漠草原禁牧区植被特征与土壤性质
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2022.11.005
Wenbang Gao , Hongtao Jiang , Shuai Zhang , Chunxing Hai , Baoyuan Liu
{"title":"Vegetation characteristics and soil properties in grazing exclusion areas of the Inner Mongolia desert steppe","authors":"Wenbang Gao ,&nbsp;Hongtao Jiang ,&nbsp;Shuai Zhang ,&nbsp;Chunxing Hai ,&nbsp;Baoyuan Liu","doi":"10.1016/j.iswcr.2022.11.005","DOIUrl":"10.1016/j.iswcr.2022.11.005","url":null,"abstract":"<div><p>In arid and semi-arid desert steppe areas, grazing exclusion with fencing is widely regarded as an effective strategy for restoring degraded vegetation and enhancing the quality of degraded soil. In this study, we hypothesized that grazing exclusion caused by fencing enhances both vegetation and soil properties, and that the longer an area is fenced, the more considerable the improvement. We conducted an observational study wherein random sampling was utilized to select 9 plots fenced for ten or more years, 25 plots fenced for four to nine years, 25 plots fenced for one to three years and 29 free-grazing plots within an area of approximately 63,000 km<sup>2</sup> of Inner Mongolia desert steppe. A one-way ANOVA revealed no significant differences in the characteristics of grassland vegetation or soil properties between grasslands fenced for one to three years and free-grazing grassland. After 4 years of fencing, noticeable increases in above-ground biomass, litter content, Simpson index, soil organic carbon, and available nitrogen were observed. Significant positive differences in vegetation coverage, height, species richness, soil available phosphorus, and available potassium were associated with plots with a minimum of 10 years of fencing. The soil layer with the greatest difference in the fenced-in areas for soil organic carbon was at 0–25 cm. For available nitrogen and available phosphorus, fencing produced the most significant differences in the 0–20 cm soil layer, while for available potassium, fencing produced the most significant differences in the 0–30 cm soil layer. However, the fencing did not indicate any statistically significant differences in terms of clay, silt, and sand content in any soil layer. The data support our hypothesis that grazing exclusion improves both vegetation and soil properties, and that longer periods of grazing exclusion result in greater degrees of improvement. This research offers technical guidance for the reasonable choice of fencing time across a vast area of the Inner Mongolian desert steppe.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 549-560"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43986215","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Wind erosion from crusted playa surfaces by no saltation and with saltation: A comparison through laboratory wind tunnel experiments 无跃变和有跃变的硬壳playa表面风蚀:通过实验室风洞实验的比较
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2022.10.007
Guoming Zhang , Li Li , Wenjian Tang , Lianyou Liu , Peijun Shi , Xujiao Han , Jiadong Dai
{"title":"Wind erosion from crusted playa surfaces by no saltation and with saltation: A comparison through laboratory wind tunnel experiments","authors":"Guoming Zhang ,&nbsp;Li Li ,&nbsp;Wenjian Tang ,&nbsp;Lianyou Liu ,&nbsp;Peijun Shi ,&nbsp;Xujiao Han ,&nbsp;Jiadong Dai","doi":"10.1016/j.iswcr.2022.10.007","DOIUrl":"10.1016/j.iswcr.2022.10.007","url":null,"abstract":"<div><p>Playas are common in many arid regions and recognized as a major source of hypersaline particles. A better understanding of wind erosion on crusted playas has significant implications for land management and pollution control practices. We hypothesized that wind erosion rates of crusted playas were complicated and controlled by the interactions between playa crust and wind-induced saltation conditions. However, comparisons regarding the effects of different playa crusts on wind erosion under no saltation (NS) and with saltation (WS) conditions were lacking. In this study, laboratory wind tunnel experiments were carried out to simulate both NS and WS conditions, to investigate the erosion rates of different crust types (Salt, Takyr, and Puffic crust) at different wind speeds. Results showed that: 1) Salt crust had greater crust strengths than did Takyr crust and Puffic crust; 2) wind erosion rates under the WS condition were up to 60 times greater than those under the NS condition, suggesting that sand bombardment was the dominant mechanism responsible for removal of fine material from crusted playa surfaces; 3) both sand bombardment rate and wind erosion rate of the playa crusts increased with increasing wind speed under the WS conditions; 4) Puffic crust exhibited a greater rate of wind erosion compared to both the Takyr and Salt crusts under the NS condition, yet tended to have a lower rate of wind erosion compared to both the Takyr and Salt crusts under the WS condition. This difference can be attributed to the fact that soft Puffic crusts are pliable and can dissipate the force of impacting grains under the WS conditions. Our results indicated that wind erosion processes on crusted playas are complicated and are affected by wind-induced saltation and crust type, specifically crust strength and elasticity of the surface.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 518-527"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47639184","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Long-term conservation tillage results in a more balanced soil microbiological activity and higher nutrient supply capacity 长期保护性耕作使土壤微生物活性更加平衡,养分供应能力更强
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2023.03.003
Priyo Adi Nugroho , Katalin Juhos , Nándor Prettl , Balázs Madarász , Zsolt Kotroczó
{"title":"Long-term conservation tillage results in a more balanced soil microbiological activity and higher nutrient supply capacity","authors":"Priyo Adi Nugroho ,&nbsp;Katalin Juhos ,&nbsp;Nándor Prettl ,&nbsp;Balázs Madarász ,&nbsp;Zsolt Kotroczó","doi":"10.1016/j.iswcr.2023.03.003","DOIUrl":"10.1016/j.iswcr.2023.03.003","url":null,"abstract":"<div><p>Soil health depletion due to intensive tillage operations is a global issue in the agricultural sector. Conservation tillage (CT) which involves non-inversion tillage and leaving ∼30% of the soil surface covered with crop residues, is a strategy designed to enhance soil health. However, no comprehensive study to investigate the long-term effect of CT on soil biological activity and the soil nutrient supply has yet been widely carried out. Biological and chemical soil properties were assessed at depths 0–5, 10–15, and 20–25 cm depths after 18 years of CT and conventional tillage practice (PT). Various stages in the vegetative growth of maize were investigated in 2021 in Hungary. The findings indicated that tillage intensity, soil depth, and growth stages all significantly influenced soil enzyme activities and the concentration of soil nutrients. Less soil disturbance resulted in a significantly larger concentration of soil carbon parameters (total organic carbon and labile carbon) in CT plots, where the activity of β-glucosidase and dehydrogenase (DHA) in the upper soil layer increased significantly (0.7–2.6 and 2.6–4.7 times, respectively) compared to PT. The high amount of organic matter and the greater resistance to erosion observed in CT also contributed to the higher concentration of available nutrients (NH<sub>4</sub>, NO<sub>3</sub>, Ca, K) and total P in the surface soil layer. Phosphatase activity was highest in the mid-stage of vegetative growth and was positively correlated to the total P concentration. The alterations in soil water content were clearly negatively correlated with the change in DHA and phosphatase activity. Overall, due to the more balanced environmental conditions, the decomposition of organic substances was more balanced and slower in CT than in PT. This implied that the mobilization of nutrients in the soil was more balanced as well, and that the nutrients were released gradually. The enhancement of the soil nutrient-supplying capacity achieved by means of long-term conservation tillage provides a promising strategy for sustainable nutrient management.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 528-537"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43848840","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Variations of soil organic carbon fractions in response to conservative vegetation successions on the Loess Plateau of China 黄土高原土壤有机碳组分对保守植被演替的响应
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2022.05.002
Muhammad Imran Ghani , Jing Wang , Peng Li , Shamina Imran Pathan , Tanveer Ali Sial , Rahul Datta , Ali Mokhtar , Esmat F. Ali , Jörg Rinklebe , Sabry M. Shaheen , Mengyun Liu , Hamada Abdelrahman
{"title":"Variations of soil organic carbon fractions in response to conservative vegetation successions on the Loess Plateau of China","authors":"Muhammad Imran Ghani ,&nbsp;Jing Wang ,&nbsp;Peng Li ,&nbsp;Shamina Imran Pathan ,&nbsp;Tanveer Ali Sial ,&nbsp;Rahul Datta ,&nbsp;Ali Mokhtar ,&nbsp;Esmat F. Ali ,&nbsp;Jörg Rinklebe ,&nbsp;Sabry M. Shaheen ,&nbsp;Mengyun Liu ,&nbsp;Hamada Abdelrahman","doi":"10.1016/j.iswcr.2022.05.002","DOIUrl":"10.1016/j.iswcr.2022.05.002","url":null,"abstract":"<div><p>Land use changes profoundly affect the equilibrium of soil organic carbon (SOC) sequestration and greenhouse gas emissions. With the current global climatic changes, it is vital to understand the influence of ecological restoration and conservation management on the dynamics of SOC under different land uses, especially in erosion-endangered Loess soils. Therefore, we investigated changes in SOC through a suit of labile fractions, namely: light fraction organic C (LFOC), heavy fraction organic C (HFOC), coarse particulate organic C (CPOC), fine particulate organic C (FPOC), and dissolved organic C (DOC), from two forests i.e., <em>Robinia pseudoacacia</em> (RP) and <em>Platycladus orientalis</em> (PO), with different ages, in comparison with farmland (FL). The SOC and STN contents significantly increased over 42 years in the RP forest where the contents of CPOC and FPOC were significantly higher than in the FL. Moreover, total SOC and its labile fractions, in the studied land use types, significantly correlated with soil CaCO<sub>3</sub>, pH, and STN contents, indicating their key roles in SOC sequestration. The results reported here from different vegetation with different ages provide a better understanding of SOC and STN alterations at different stages of vegetation restoration. Our findings suggest that long-term natural vegetation restoration could be an effective approach for SOC sequestration and soil conservation on the Loess soil.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 561-571"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43197841","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Call for joint international actions to improve scientific understanding and address soil erosion and riverine sediment issues in mountainous regions |呼吁采取联合国际行动,提高科学认识,解决山区土壤侵蚀和河流泥沙问题
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2023.04.006
Fan Zhang , Baoyuan Liu , Liping Zhu , Richard Cruse , Dongfeng Li , Panos Panagos , Pasquale Borrelli , Yakov Kuzyakov , Shaoshan An
{"title":"Call for joint international actions to improve scientific understanding and address soil erosion and riverine sediment issues in mountainous regions","authors":"Fan Zhang ,&nbsp;Baoyuan Liu ,&nbsp;Liping Zhu ,&nbsp;Richard Cruse ,&nbsp;Dongfeng Li ,&nbsp;Panos Panagos ,&nbsp;Pasquale Borrelli ,&nbsp;Yakov Kuzyakov ,&nbsp;Shaoshan An","doi":"10.1016/j.iswcr.2023.04.006","DOIUrl":"10.1016/j.iswcr.2023.04.006","url":null,"abstract":"<div><p>During the International Workshop on Soil Erosion and Riverine Sediment in Mountainous Regions held in November 2022, scientists from many countries shared their state-of-the-art knowledge and brainstormed to improve scientific understanding for coping with climate change and anthropogenic impacts. Information summarized in this discussion includes proposed key scientific questions and suggested joint actions to reduce soil erosion and riverine sediment problems in mountainous regions.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 586-588"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44516995","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Novel sediment source fingerprinting quantifying erosion-induced total nitrogen and total phosphorus outputs from an intensive agricultural catchment, North China 新型沉积物源指纹图谱定量分析华北集约化农业流域侵蚀诱导的总氮和总磷输出
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2022.10.006
Hanqing Yu , Joseph Adu-Gyamfi , Suarau Odutola Oshunsanya , Adrian Chappell , Wenxiang Liu , Yu Zheng , Tingting Xue , Lee Heng
{"title":"Novel sediment source fingerprinting quantifying erosion-induced total nitrogen and total phosphorus outputs from an intensive agricultural catchment, North China","authors":"Hanqing Yu ,&nbsp;Joseph Adu-Gyamfi ,&nbsp;Suarau Odutola Oshunsanya ,&nbsp;Adrian Chappell ,&nbsp;Wenxiang Liu ,&nbsp;Yu Zheng ,&nbsp;Tingting Xue ,&nbsp;Lee Heng","doi":"10.1016/j.iswcr.2022.10.006","DOIUrl":"10.1016/j.iswcr.2022.10.006","url":null,"abstract":"<div><p>Intensive farming is a primary cause of increased sediment and associated nitrogen (N) and phosphorus (P) loads in surface water systems. Determining their contributing sources, pathways and loads present major challenges in the high-intensity agricultural catchments. Herein, we quantify the sediment sources and magnitude of sediment total N and total P from different sources using a novel application of compound-specific stable isotope (CSSI) and fallout radionuclides (FRNs) of <sup>137</sup>Cs and <sup>210</sup>Pbex in an intensive agricultural catchment in North China. Sediment sources from surface and sub-surface soils were estimated from FRNs fingerprint and accounted for 62 ± 7% and 38 ± 7% respectively, while surface soil from land uses that originated from hillslope were identified by CSSI fingerprint. Using a novel application of FRNs and CSSI sediment fingerprinting techniques, the dominant sediment source was derived from maize farmland (44 ± 0.1%), followed by channel bank (38 ± 7%). The sedimentation rate (13.55 ± 0.30 t ha<sup>−1</sup> yr<sup>−1</sup>) was quantified by the <sup>137</sup>Cs cores (0–60 cm) at the outlet of this catchment. The total N and total P in sediment were both mostly derived from maize farmland and least from channel banks. The channel banks are significant sediment sources but contribute little to the input of sediment N and P for eutrophication. It implies that chemically-applied farmlands are the main hotspots for catchment erosion control and pollution prevention. The novel application of FRNs and CSSI techniques cost-effectively quantified sediment N and P loads from different sources with a single visit to the catchment, enabling rapid assessment for optimizing soil conservation strategies and land management practices. Keywords: Sediment sources, Land use, N and P loads, Compound-specific stable isotope, Fallout radionuclides.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 494-506"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44502335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Remote sensing of soil degradation: Progress and perspective 土壤退化遥感:进展与展望
IF 6.4 1区 农林科学
International Soil and Water Conservation Research Pub Date : 2023-09-01 DOI: 10.1016/j.iswcr.2023.03.002
Jingzhe Wang , Jianing Zhen , Weifang Hu , Songchao Chen , Ivan Lizaga , Mojtaba Zeraatpisheh , Xiaodong Yang
{"title":"Remote sensing of soil degradation: Progress and perspective","authors":"Jingzhe Wang ,&nbsp;Jianing Zhen ,&nbsp;Weifang Hu ,&nbsp;Songchao Chen ,&nbsp;Ivan Lizaga ,&nbsp;Mojtaba Zeraatpisheh ,&nbsp;Xiaodong Yang","doi":"10.1016/j.iswcr.2023.03.002","DOIUrl":"10.1016/j.iswcr.2023.03.002","url":null,"abstract":"<div><p>Soils constitute one of the most critical natural resources and maintaining their health is vital for agricultural development and ecological sustainability, providing many essential ecosystem services. Driven by climatic variations and anthropogenic activities, soil degradation has become a global issue that seriously threatens the ecological environment and food security. Remote sensing (RS) technologies have been widely used to investigate soil degradation as it is highly efficient, time-saving, and broad-scope. This review encompasses recent advances and the state-of-the-art of ground, proximal, and novel RS techniques in soil degradation-related studies. We reviewed the RS-related indicators that could be used for monitoring soil degradation-related properties. The direct indicators (mineral composition, organic matter, surface roughness, and moisture content of soil) and indirect proxies (vegetation condition and land use/land cover change) for evaluating soil degradation were comprehensively summarized. The results suggest that these above indicators are effective for monitoring soil degradation, however, no indicators system has been established for soil degradation monitoring to date. We also discussed the RS's mechanisms, data, and methods for identifying specific soil degradation-related phenomena (e.g., soil erosion, salinization, desertification, and contamination). We investigated the potential relations between soil degradation and Sustainable Development Goals (SDGs) and also discussed the challenges and prospective use of RS for assessing soil degradation. To further advance and optimize technology, analysis and retrieval methods, we identify critical future research needs and directions: (1) multi-scale analysis of soil degradation; (2) availability of RS data; (3) soil degradation process modelling and prediction; (4) shared soil degradation dataset; (5) decision support systems; and (6) rehabilitation of degraded soil resource and the contribution of RS technology. Because it is difficult to monitor or measure all soil properties in the large scale, remotely sensed characterization of soil properties related to soil degradation is particularly important. Although it is not a silver bullet, RS provides unique benefits for soil degradation-related studies from regional to global scales.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":"11 3","pages":"Pages 429-454"},"PeriodicalIF":6.4,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48104397","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 19
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信