Vegetation characteristics and soil properties in grazing exclusion areas of the Inner Mongolia desert steppe

IF 7.3 1区 农林科学 Q1 ENVIRONMENTAL SCIENCES
Wenbang Gao , Hongtao Jiang , Shuai Zhang , Chunxing Hai , Baoyuan Liu
{"title":"Vegetation characteristics and soil properties in grazing exclusion areas of the Inner Mongolia desert steppe","authors":"Wenbang Gao ,&nbsp;Hongtao Jiang ,&nbsp;Shuai Zhang ,&nbsp;Chunxing Hai ,&nbsp;Baoyuan Liu","doi":"10.1016/j.iswcr.2022.11.005","DOIUrl":null,"url":null,"abstract":"<div><p>In arid and semi-arid desert steppe areas, grazing exclusion with fencing is widely regarded as an effective strategy for restoring degraded vegetation and enhancing the quality of degraded soil. In this study, we hypothesized that grazing exclusion caused by fencing enhances both vegetation and soil properties, and that the longer an area is fenced, the more considerable the improvement. We conducted an observational study wherein random sampling was utilized to select 9 plots fenced for ten or more years, 25 plots fenced for four to nine years, 25 plots fenced for one to three years and 29 free-grazing plots within an area of approximately 63,000 km<sup>2</sup> of Inner Mongolia desert steppe. A one-way ANOVA revealed no significant differences in the characteristics of grassland vegetation or soil properties between grasslands fenced for one to three years and free-grazing grassland. After 4 years of fencing, noticeable increases in above-ground biomass, litter content, Simpson index, soil organic carbon, and available nitrogen were observed. Significant positive differences in vegetation coverage, height, species richness, soil available phosphorus, and available potassium were associated with plots with a minimum of 10 years of fencing. The soil layer with the greatest difference in the fenced-in areas for soil organic carbon was at 0–25 cm. For available nitrogen and available phosphorus, fencing produced the most significant differences in the 0–20 cm soil layer, while for available potassium, fencing produced the most significant differences in the 0–30 cm soil layer. However, the fencing did not indicate any statistically significant differences in terms of clay, silt, and sand content in any soil layer. The data support our hypothesis that grazing exclusion improves both vegetation and soil properties, and that longer periods of grazing exclusion result in greater degrees of improvement. This research offers technical guidance for the reasonable choice of fencing time across a vast area of the Inner Mongolian desert steppe.</p></div>","PeriodicalId":48622,"journal":{"name":"International Soil and Water Conservation Research","volume":null,"pages":null},"PeriodicalIF":7.3000,"publicationDate":"2023-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Soil and Water Conservation Research","FirstCategoryId":"93","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2095633922000909","RegionNum":1,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

In arid and semi-arid desert steppe areas, grazing exclusion with fencing is widely regarded as an effective strategy for restoring degraded vegetation and enhancing the quality of degraded soil. In this study, we hypothesized that grazing exclusion caused by fencing enhances both vegetation and soil properties, and that the longer an area is fenced, the more considerable the improvement. We conducted an observational study wherein random sampling was utilized to select 9 plots fenced for ten or more years, 25 plots fenced for four to nine years, 25 plots fenced for one to three years and 29 free-grazing plots within an area of approximately 63,000 km2 of Inner Mongolia desert steppe. A one-way ANOVA revealed no significant differences in the characteristics of grassland vegetation or soil properties between grasslands fenced for one to three years and free-grazing grassland. After 4 years of fencing, noticeable increases in above-ground biomass, litter content, Simpson index, soil organic carbon, and available nitrogen were observed. Significant positive differences in vegetation coverage, height, species richness, soil available phosphorus, and available potassium were associated with plots with a minimum of 10 years of fencing. The soil layer with the greatest difference in the fenced-in areas for soil organic carbon was at 0–25 cm. For available nitrogen and available phosphorus, fencing produced the most significant differences in the 0–20 cm soil layer, while for available potassium, fencing produced the most significant differences in the 0–30 cm soil layer. However, the fencing did not indicate any statistically significant differences in terms of clay, silt, and sand content in any soil layer. The data support our hypothesis that grazing exclusion improves both vegetation and soil properties, and that longer periods of grazing exclusion result in greater degrees of improvement. This research offers technical guidance for the reasonable choice of fencing time across a vast area of the Inner Mongolian desert steppe.

内蒙古荒漠草原禁牧区植被特征与土壤性质
在干旱和半干旱的沙漠草原地区,围栏禁牧被广泛认为是恢复退化植被和提高退化土壤质量的有效策略。在这项研究中,我们假设围栏引起的放牧排斥会增强植被和土壤特性,并且围栏覆盖的区域越长,改善就越显著。我们进行了一项观察性研究,在内蒙古沙漠草原约63000平方公里的区域内,利用随机抽样选择了9个围栏10年或10年以上的地块、25个围栏4至9年的地块、5个围栏1至3年的地块和29个自由放牧的地块。单因素方差分析显示,围栏一至三年的草地和自由放牧草地之间的草地植被或土壤特性没有显著差异。围栏4年后,地上生物量、凋落物含量、辛普森指数、土壤有机碳和有效氮显著增加。植被覆盖率、高度、物种丰富度、土壤有效磷和有效钾的显著正差异与至少有10年围栏的地块有关。围栏区土壤有机碳差异最大的土层为0–25 cm。对于有效氮和有效磷,围栏在0-20 cm土层中产生了最显著的差异,而对于有效钾,围栏在0-30 cm土层产生了最明显的差异。然而,围栏并没有显示任何土层中粘土、淤泥和沙子含量的任何统计显著差异。这些数据支持了我们的假设,即排除放牧可以改善植被和土壤特性,并且排除放牧的时间越长,改善程度越大。本研究为内蒙古大草原合理选择围挡时间提供了技术指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
International Soil and Water Conservation Research
International Soil and Water Conservation Research Agricultural and Biological Sciences-Agronomy and Crop Science
CiteScore
12.00
自引率
3.10%
发文量
171
审稿时长
49 days
期刊介绍: The International Soil and Water Conservation Research (ISWCR), the official journal of World Association of Soil and Water Conservation (WASWAC) http://www.waswac.org, is a multidisciplinary journal of soil and water conservation research, practice, policy, and perspectives. It aims to disseminate new knowledge and promote the practice of soil and water conservation. The scope of International Soil and Water Conservation Research includes research, strategies, and technologies for prediction, prevention, and protection of soil and water resources. It deals with identification, characterization, and modeling; dynamic monitoring and evaluation; assessment and management of conservation practice and creation and implementation of quality standards. Examples of appropriate topical areas include (but are not limited to): • Conservation models, tools, and technologies • Conservation agricultural • Soil health resources, indicators, assessment, and management • Land degradation • Sustainable development • Soil erosion and its control • Soil erosion processes • Water resources assessment and management • Watershed management • Soil erosion models • Literature review on topics related soil and water conservation research
文献相关原料
公司名称 产品信息 采购帮参考价格
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信