SoilPub Date : 2024-10-14DOI: 10.5194/egusphere-2024-1875
Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, Jacinthe Caillaud
{"title":"A quantitative assessment of the behavior of metallic elements in urban soils exposed to industrial dusts near Dunkirk (Northern France)","authors":"Marine Casetta, Sylvie Philippe, Lucie Courcot, David Dumoulin, Gabriel Billon, François Baudin, Françoise Henry, Michaël Hermoso, Jacinthe Caillaud","doi":"10.5194/egusphere-2024-1875","DOIUrl":"https://doi.org/10.5194/egusphere-2024-1875","url":null,"abstract":"<strong>Abstract.</strong> In urban and industrialized areas, soil contamination and degradation caused by the deposition of industrial dusts may pose significant health and environmental risks. This problem relates to the vertical mobility and bioavailability of Potentially Toxic Elements (PTE). This study investigates the fate of PTE brought by industrial dusts in urban soils located in the Dunkerque agglomeration, one of the most industrialized areas of France. Four soil short cores were collected in the city of Gravelines (Dunkerque agglomeration) following a gradient from the industrial emitters to the deposition site. The soil cores were cut into discrete 1-cm-sections to study their PTE concentrations (using ICP-AES/MS analyses). Single HCl extraction was performed to evaluate the mobility of PTE in soils and to discuss their specific behavior according to the current soil parameters. For this purpose, the main soil parameters were identified (grain-size distribution, mineralogy, pH, CEC, TOC, calcium carbonates and water contents) in addition to the soil chemical composition (XRF, ICP-AES/MS analyses). The studied soils revealed globally low absorbent capacities for pollutants (CEC averaging 5.3 meq/100g), partially counterbalanced by the buffering effect of calcium carbonates (contents ranging from 8 % to 30 %). We highlighted minor (1<EF<3) to moderately severe (5<EF<10) Enrichment Factors in industrial PTE (Cr, Ni, Mo, Mn, Cd, Zn), in the first 3 centimeters of the soils located near the industrial emitters. The contamination profiles of these soils are concordant with atmospheric inputs of metallurgical dust. Using a relatively strong leaching reagent (HCl 1M), we estimated a low vertical mobility for Cr, Ni and Mo (average leached ratios <25 %) in soils, suggesting that these industrial PTE mainly occur in refractory phases (natural or anthropogenic). Mn, Cd and Zn, related to industrial and/or urban sources, present a higher mobility (average leached ratios > 60 % for Mn and Cd, and averaging 44 % for Zn). Our study points out the stability of industrial PTE in soils under current physicochemical conditions (calcareous soils with a slightly basic pH of 7.8). In this context, the monitoring of industrial PTE in these urban soils is highly recommended, considering (1) the presence of allotment gardens in the vicinity of the emitters and (2) the potential evolution of soil conditions as a result of increased flooding events.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"57 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-10-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142431322","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-10-11DOI: 10.5194/egusphere-2024-3030
Andres F. Rodriguez, Johannes W. M. Pullens, Jesper R. Christiansen, Klaus S. Larsen, Poul E. Lærke
{"title":"Modeling of greenhouse gas emissions from paludiculture in rewetting peatlands is improved by high frequency water table data","authors":"Andres F. Rodriguez, Johannes W. M. Pullens, Jesper R. Christiansen, Klaus S. Larsen, Poul E. Lærke","doi":"10.5194/egusphere-2024-3030","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3030","url":null,"abstract":"<strong>Abstract.</strong> Rewetting drained peatlands can reduce CO<sub>2</sub> emissions but prevents traditional agriculture. Crop production under rewetted conditions may continue with flood-tolerant crops in paludiculture, but its effects on greenhouse gas (GHG) emissions compared to rewetting without further management are largely unknown This study was conducted between 2021 and 2022 on a fen peatland in central Denmark. At the study site, three harvest/fertilization management treatments were implemented on Reed Canary Grass (RCG) established in 2018. Measurements of CO<sub>2</sub> and CH<sub>4</sub> emissions were conducted biweekly using a transparent manual chamber connected to a gas analyzer and manipulating light intensities with four shrouding levels. Although this was a rather wet peatland (−8 cm mean annual WTD), the site was a CO<sub>2</sub> source with a mean net ecosystem C balance (NECB) of 6.5 t C ha<sup>−1</sup> yr<sup>−1</sup> across treatments. Model simulation with the use of high temporal resolution water table depth (WTD) data was able to better capture ecosystem respiration (R<sub>eco</sub>) peaks compared to the use of mean annual WTD, which underestimated R<sub>eco</sub>. Data on pore water chemistry further improved statistical linear models of CO<sub>2</sub> fluxes using soil temperature (Ts), WTD, ratio vegetation indices and PAR as explanatory variables. Significant differences in CO<sub>2</sub> emissions and water chemistry parameters were found between studied blocks, with higher R<sub>eco</sub> corresponding to blocks with higher pore water nutrient concentrations. Methane emissions averaged 113 kg of CH<sub>4</sub> ha<sup>−1</sup> yr<sup>−1</sup>, equivalent to 11.3 % of the total carbon emission in CO<sub>2</sub> equivalents. Because of large heterogeneity among the experimental blocks no significant treatment effect was found, however, the results indicate that biomass harvest reduces GHG emission from productive rewetted peatland areas in comparison with no management, whereas on less productive areas it is beneficial to leave the biomass unmanaged.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"9 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-10-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142405147","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-10-10DOI: 10.5194/soil-10-699-2024
Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, Laurent Thuriès
{"title":"Diachronic assessment of soil organic C and N dynamics under long-term no-till cropping systems in the tropical upland of Cambodia","authors":"Vira Leng, Rémi Cardinael, Florent Tivet, Vang Seng, Phearum Mark, Pascal Lienhard, Titouan Filloux, Johan Six, Lyda Hok, Stéphane Boulakia, Clever Briedis, João Carlos de Moraes Sá, Laurent Thuriès","doi":"10.5194/soil-10-699-2024","DOIUrl":"https://doi.org/10.5194/soil-10-699-2024","url":null,"abstract":"Abstract. No-till (NT) cropping systems have been proposed as a strategy to combat soil degradation by storing soil organic carbon (SOC) and total nitrogen (TN). We quantified the impacts of NT cropping systems on the changes in SOC and TN stocks and in particulate and mineral-associated organic matter fractions (POM and MAOM), to 100 cm depth, from three 13-year-old experiments in a tropical red Oxisol in Cambodia using diachronic and equivalent soil mass approaches. Established in 2009 and arranged in a randomized complete-block design with triplicates, the experiments included maize (MaiEx)-, soybean (SoyEx)-, and cassava (CasEx)-based cropping systems. Each experiment comprised three treatments: (1) mono-cropping of main crops (maize, soybean, and cassava) under conventional tillage (CTM); (2) mono-cropping of main crops under NT systems with the use of cover crops (NTM); and (3) bi-annual rotation of main crops under NT systems with the use of cover crops (NTR), with both crops being presented every year and represented by NTR1 and NTR2. Soil samples were collected in 2021, 10 years after the last sampling. All the NT systems significantly (p<0.05) increased SOC stock in the topsoil in SoyEx and MaiEx and down to 40 cm in CasEx. Considering the whole profile (0–100 cm), the SOC accumulation rates ranged from 0.86 to 1.47 and from 0.70 to 1.07 Mg C ha−1 yr−1 in MaiEx and CasEx, respectively. Although SOC stock significantly increased in CTM at 0–20 cm in MaiEx and CasEx, it remained stable at 0–100 cm in all the experiments. At 0–5 cm, NTR systems significantly increased TN stock in all the experiments, while, in NTM systems, it was only significant in MaiEx and SoyEx. At 0–100 cm, TN stock in all the experiments remained stable under NTR systems, whereas a significant decrease was observed under NTM systems in SoyEx and CasEx. Although C-POM stock significantly increased under all NT systems limited to 0–10 cm in MaiEx and SoyEx, all the NT systems significantly increased C-MAOM stock in the 0–10 cm layer in MaiEx and SoyEx and down to 40 cm in CasEx. All the NT systems significantly increased N-POM stock at 0–10 cm in MaiEx and SoyEx, while a significant decreased in N-MAOM stock was observed below 5 cm in CasEx and below 40 cm in MaiEx and SoyEx. Our findings showed that long-term NT systems with crop species diversification accumulated SOC not only on the surface but also in the whole profile by increasing SOC in both the POM and MAOM, even in the cassava-based system. This study highlights the potential of NT systems for storing SOC over time but raises questions about soil N dynamics.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"9 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397750","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-10-10DOI: 10.5194/egusphere-2024-2937
Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, Daniel Epron
{"title":"Methane oxidation potential of soils in a rubber plantation in Thailand affected by fertilization","authors":"Jun Murase, Kannika Sajjaphan, Chatprawee Dechjiraratthanasiri, Ornuma Duangngam, Rawiwan Chotiphan, Wutthida Rattanapichai, Wakana Azuma, Makoto Shibata, Poonpipope Kasemsap, Daniel Epron","doi":"10.5194/egusphere-2024-2937","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2937","url":null,"abstract":"<strong>Abstract.</strong> Forest soils, as crucial sinks for atmospheric methane in terrestrial ecosystems, are significantly impacted by changes in ecosystem dynamics due to deforestation and agricultural practices. This study investigated the methane oxidation potential of rubber plantation soils in Thailand, focusing on the effect of fertilization. The methane oxidation activity of the top soils (0–10 cm) in the dry season was found to be extremely low and slightly increased in the wet season, with lower activity for higher fertilization levels. The potential methane oxidation potential of the topsoil was too low to explain the in-situ methane uptake. Soils below 10 cm depth in unfertilized rubber plantations showed higher activity than the surface soils, and methane oxidation was detected at least down to 60 cm depth. In contrast, soils under the high-fertilization treatment exhibited similarly low activity of methane oxidation up to 60 cm depth as surface soils both in dry and wet seasons, indicating that fertilization of para rubber plantation negatively impacts the methane oxidation potential of the soils over the deep profile without recovery in the off-season with no fertilization. Methane uptake per area estimated by integrating the methane oxidation potentials of soil layers was comparable to the field flux data, suggesting that methane oxidation in the soil predominantly occurs in depths below the surface layer. These findings have significant implications for understanding the environmental impacts of tropical forest land uses on methane dynamics and underscore the importance of understanding methane oxidation processes in soils.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"227 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397785","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-10-10DOI: 10.5194/egusphere-2024-2889
Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, Lutz Weihermüller
{"title":"Assessing soil fertilization effects using time-lapse electromagnetic induction","authors":"Manuela S. Kaufmann, Anja Klotzsche, Jan van der Kruk, Anke Langen, Harry Vereecken, Lutz Weihermüller","doi":"10.5194/egusphere-2024-2889","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2889","url":null,"abstract":"<strong>Abstract.</strong> Adding mineral fertilizers and mineral nutrient is a common practice in conventional farming and fundamental to maintain optimal yield and crop quality, whereby nitrogen is the most applied fertilizer often used excessively, leading to adverse environmental impacts. To assist farmers in optimal fertilization and crop management, non-invasive geophysical methods can provide knowledge about the spatial and temporal distributions of nutrients in the soil. In recent years, electromagnetic induction (EMI) is widely used for field characterization, to delineate soil units and management zones or to estimate soil properties and states. Additionally, ground penetrating radar (GPR) and electrical resistivity tomography (ERT) have been used in local studies to measure changes of soil properties. Unfortunately, the measured geophysical signals are confounded by horizontal and vertical changes of soil states and parameters and the single contributions of those states and parameters are not easy to disentangle. Within fields, and also between fields, fertilization management might vary in space and time, and therefore, the differences in pore fluid conductivity caused directly by fertilization, or indirectly by different crop performance, makes the interpretation of large-scale geophysical survey over field borders complicated. To study the direct effect of mineral fertilization and its effects on the soil electrical conductivity, a field experiment was performed on 21 bare soil plots with seven different fertilization treatments. As fertilizers, calcium ammonium nitrate (CAN) and potassium chloride (KCl) were chosen and applied in three dosages. Soil water content, soil temperature, and bulk electrical conductivity were recorded permanently over 450 days. Additionally, 20 EMI, 7 GPR, and 9 ERT surveys were performed and at days of ERT measurements soil samples for nitrate and reference soil electrical conductivity measurements were taken. The results showed that the commonly used CAN application dosage did not impact the geophysical signals significantly. On the other hand, EMI and ERT were able to trace back the temporal changes in nitrate concentrations in the soil profile over more than one year. On the other hand, the results also showed, that both techniques were not able to trace the nitrate concentrations in the very shallow soil layer of 0–10 cm. Irrespectively of the low impact of fertilization on the geophysical signal, the results indicated that past fertilization practices cannot be neglected in EMI studies, especially if surveys are performed over large areas with different fertilization practices or crop grown with different fertilizer demands or uptake.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"24 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-10-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142397789","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-10-07DOI: 10.5194/egusphere-2024-2810
Thorsten Behrens, Karsten Schmidt, Felix Stumpf, Simon Tutsch, Marie Hertzog, Urs Grob, Armin Keller, Raphael Viscarra Rossel
{"title":"Operationalizing fine-scale soil property mapping with spectroscopy and spatial machine learning","authors":"Thorsten Behrens, Karsten Schmidt, Felix Stumpf, Simon Tutsch, Marie Hertzog, Urs Grob, Armin Keller, Raphael Viscarra Rossel","doi":"10.5194/egusphere-2024-2810","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2810","url":null,"abstract":"<strong>Abstract.</strong> One challenge in soil mapping is the transfer of new techniques and methods into operational practice, integrating them with traditional field surveys, reducing costs, and increasing the quality of the soil maps. The latter is paramount, as they form the basis for many thematic maps. As part of a novel approach to soil mapping, we integrate various technologies and pedometric methodologies to create soil property maps for soil surveyors, which they can utilize as a reference before beginning their pedological fieldwork. This gives the surveyors considerably more detailed and accurate prior information, reducing the subjectivity inherent in soil mapping. Our approach comprises a novel soil sampling design that effectively captures spatial and feature spaces, mid-infrared spectroscopy, and spatial machine learning based on a comprehensive set of covariates generated through various feature engineering approaches. We employ multi-scale terrain attributes, temporal multi-scale remote sensing, and Euclidean distance fields to account for environmental correlation, spatial non-stationarity, and spatial autocorrelation in machine learning. Methods to reduce the uncertainties inherent to the spectral and spatial data were integrated. The new sampling design is based on a geographical stratification and focuses on the local soil variability. The method identifies spatially local minima and maxima of the feature space, which is fundamental to soil surveys at the specified scale. The k-means and Kennard-Stone algorithms were applied in a sequential manner within each cell of a hexagonal grid overlaying the study area. This approach permits a systematic sub-sampling from each cell to analyze predictive accuracy for varying sampling densities. We tested one to three samples per hectare. Our findings indicate that a sample size of two samples per hectare was sufficient for accurately mapping soil properties across 300 hectares. This markedly reduces the financial burden associated with subsequent projects, given the significant reduction in the time and resources required for surveying. The spectroscopic and spatial models were unbiased and yielded average R<sup>2</sup> values of 0.91 and 0.68–0.86, depending on mapping with or without pedotransfer models. Our study highlights the value of integrating robust pedometric technologies in soil surveys.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"6 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-10-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142383745","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-09-30DOI: 10.5194/egusphere-2024-2933
Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, Isabelle Basile-Doelsch
{"title":"Cultivation reduces quantities of mineral-organic associations in the form of amorphous coprecipitates","authors":"Floriane Jamoteau, Emmanuel Doelsch, Nithavong Cam, Clément Levard, Thierry Woignier, Adrien Boulineau, François Saint-Antonin, Sufal Swaraj, Ghislain Gassier, Adrien Duvivier, Daniel Borschneck, Marie-Laure Pons, Perrine Chaurand, Vladimir Vidal, Nicolas Brouilly, Isabelle Basile-Doelsch","doi":"10.5194/egusphere-2024-2933","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2933","url":null,"abstract":"<strong>Abstract.</strong> Mineral-organic associations are crucial carbon and nutrient reservoirs in soils. However, soil cultivation disrupts these associations, leading to carbon loss and reduced soil fertility. Although, identifying the specific type(s) of mineral-organic associations susceptible to destruction or transformation upon cropping remains challenging, it is essential for devising strategies to preserve organic matter in croplands. Here we aimed to determine the predominant mineral-organic associations and to identify which types of associations are transformed upon cultivation. To achieve this, we sampled an andosol from both a forested and a cultivated area. We then analyzed cultivation-induced changes in soil physicochemical parameters and characterized mineral-organic associations using an array of spectro-microscopic techniques (TEM-EDX, TEM-EELS, and STXM), for comprehensive structural and compositional analysis. At the micro and nanoscale, we observed mineral-organic associations in the form of coprecipitates composed of amorphous oligomers containing Al, Si, and Fe (referred to as nanoCLICs for nanosized coprecipitates of inorganic oligomers with organics). Down to a few hundred nanometers, the nanoCLICs displayed elemental enrichments with C+Al+Si, C+Fe+Al+Si, or Al+Si dominance with less C. In contrast, organic matter exhibited various C speciation without compound-specific enrichments. These findings suggest that mineral-organic associations in andosols are nanoCLICs-type coprecipitates rather than organic matter associated solely with secondary minerals. NanoCLICs were present in both forest and crop andosols, and while cropping led to a 50 % decrease in nanoCLICs, it did not alter their nature. This novel conceptualization of mineral-organic associations as nanoCLICs shifts our understanding of their persistence in andosols and demonstrates their vulnerability to crop-induced changes.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"43 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142360116","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-09-30DOI: 10.5194/soil-10-679-2024
Jeremy Rohmer, Stephane Belbeze, Dominique Guyonnet
{"title":"Insights into the prediction uncertainty of machine-learning-based digital soil mapping through a local attribution approach","authors":"Jeremy Rohmer, Stephane Belbeze, Dominique Guyonnet","doi":"10.5194/soil-10-679-2024","DOIUrl":"https://doi.org/10.5194/soil-10-679-2024","url":null,"abstract":"Abstract. Machine learning (ML) models have become key ingredients for digital soil mapping. To improve the interpretability of their predictions, diagnostic tools such as the widely used local attribution approach known as SHapley Additive exPlanations (SHAP) have been developed. However, the analysis of ML model predictions is only one part of the problem, and there is an interest in obtaining deeper insights into the drivers of the prediction uncertainty as well, i.e. explaining why an ML model is confident given the set of chosen covariate values in addition to why the ML model delivered some particular results. In this study, we show how to apply SHAP to local prediction uncertainty estimates for a case of urban soil pollution – namely, the presence of petroleum hydrocarbons in soil in Toulouse (France), which pose a health risk via vapour intrusion into buildings, direct soil ingestion, and groundwater contamination. Our results show that the drivers of the prediction best estimates are not necessarily the drivers of confidence in these predictions, and we identify those leading to a reduction in uncertainty. Our study suggests that decisions regarding data collection and covariate characterisation as well as communication of the results should be made accordingly.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"22 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329939","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-09-30DOI: 10.5194/egusphere-2024-2771
Huan Niu, Xia Luo, Peihan Li, Hang Qiu, Liyue Jiang, Subati Maimaitiaili, Minghui Wu, Fei Xu, Heng Xu, Can Wang
{"title":"Cr(VI) reduction, electricity production, and microbial resistance variation in paddy soil under microbial fuel cell operation","authors":"Huan Niu, Xia Luo, Peihan Li, Hang Qiu, Liyue Jiang, Subati Maimaitiaili, Minghui Wu, Fei Xu, Heng Xu, Can Wang","doi":"10.5194/egusphere-2024-2771","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2771","url":null,"abstract":"<strong>Abstract.</strong> Microbial fuel cell (MFC) is an efficient in-situ approach to combat pollutants and generate electricity. This study constructed a soil MFC (SMFC) to reduce Cr(VI) in paddy soil and investigate its influence on microbial community and microbial resistance characteristics. Fe<sub>3</sub>O<sub>4</sub> nanoparticle as the cathodic catalyst effectively boosted power generation (0.97 V, 102.0 mW/m<sup>2</sup>), whose porous structure and reducibility also contributed to Cr reduction and immobilization. After 30 days, 93.67 % of Cr(VI) was eliminated. The bioavailable Cr decreased by 97.44 % while the residual form increased by 88.89 %. SMFC operation greatly changed soil enzymatic activity and microbial structure, with exoelectrogens like <em>Desulfotomaculum</em> (3.32 % in anode) and Cr(VI)-reducing bacteria like <em>Hydrogenophaga </em>(2.07 % in cathode) more than 1000 folds of soil. In particular, SMFC operation significantly enhanced the abundance of heavy metal resistance genes (HRGs). Among them, <em>chrA, chrB, and chrR</em> increased by 99.54~3314.34 % in SMFC anode than control, probably attributed to the enrichment of potential tolerators like <em>Acinetobacter, Limnohabitans, </em>and <em>Desulfotomaculum</em>. These key taxa were positively correlated with HRGs but negatively correlated with pH, EC, and Cr(VI), which could have driven Cr(VI) reduction. This study provided novel evidence for bioelectrochemical system application in contaminated paddy soil, which could be a potential approach for environmental remediation and detoxification.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"56 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142329937","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2024-09-26DOI: 10.5194/egusphere-2024-2851
E. R. Jasper Wubs
{"title":"Benchmarking soil multifunctionality","authors":"E. R. Jasper Wubs","doi":"10.5194/egusphere-2024-2851","DOIUrl":"https://doi.org/10.5194/egusphere-2024-2851","url":null,"abstract":"<strong>Abstract.</strong> Healthy soils provide multiple functions that importantly contribute to human wellbeing, including primary production, climate and water regulation, and supporting biodiversity. These functions can partially be combined and some functions also clearly trade-off: this motivates soil multifunctionality research. Society needs scientists to help assess which soils are best for which soil functions and to determine appropriate long-term management of any given soil for optimal function delivery. However, for both tasks science lacks coherent tools and in this paper I propose a way forward. Critically, we lack a common measurement framework that pins soil functioning measurements on a common scale. Currently the field is divided with respect to the methods we use to measure and assess soil functioning and indicators thereof. Only three indicator variables (SOM, acidity, and available P) were commonly measured (>70 % of schemes) across 65 schemes that aim to measure soil health or quality, and no biological measure is implemented in more than 30 % of the 65 schemes. This status quo prevents us from systematically comparing across and within soils; we lack a soil multifunctionality benchmark. We can address this limitations systematically by setting a common measurement system. To do this, I propose to use latent variable modelling based on a common set of functional measurements, to develop a common ‘IQ test for soils’. I treat soil functions as latent variables, because they are complex processes that cannot be measured directly, we can only detect drivers and consequences of these complex processes. Latent variable modelling has a long history in social, economic and psychometric fields, where it is known as factor analysis. Factor analysis aims to derive common descriptors – the factors – of hypothesized constructs by linking measurable response variables together on a common scale. Here, I explain why such a new approach to soil multifunctionality and soil health is needed and how it can be operationalized. The framework developed here is only an initial proposal, the issue of soil multifunctionality is too complex and too important to be addressed in one go. It needs to be resolved iteratively by bands of scientist working intensively together. We need to bring our best science together, in a collaborative effort, to develop progressively more refined ways of sustainably managing one of humanity’s most precious resources: our soils.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"15 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2024-09-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142321499","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}