SoilPub Date : 2025-02-04DOI: 10.5194/soil-11-141-2025
Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, Daniel P. Rasse
{"title":"Biochar reduces early-stage mineralization rates of plant residues more in coarse-textured soils than in fine-textured soils – an artificial-soil approach","authors":"Thiago M. Inagaki, Simon Weldon, Franziska B. Bucka, Eva Farkas, Daniel P. Rasse","doi":"10.5194/soil-11-141-2025","DOIUrl":"https://doi.org/10.5194/soil-11-141-2025","url":null,"abstract":"Abstract. Quantifying the impact of biochar on carbon persistence across soil textures is complex, owing to the variability in soil conditions. Using artificial soils with precise textural and mineral compositions, we can disentangle the effects of biochar from the effects of soil particle size. We can show that biochar application significantly reduces the early-stage carbon mineralization rates of plant residues in various soil textures (from 5 % to 41 % clay) but more significantly in sandy soils. Clay and silt particles alone also reduce C mineralization, but the magnitude of the changes is negligible compared to the impact of biochar. This finding suggests that biochar can compensate for the lack of clay in promoting C persistence in soil systems. This short report contributes substantially to understanding soil texture and biochar application interactions.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"1 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-02-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143083816","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-31DOI: 10.5194/soil-11-121-2025
Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, Steven Sleutel
{"title":"The effect of groundwater depth on topsoil organic matter mineralization during a simulated dry summer in northwestern Europe","authors":"Astrid Françoys, Orly Mendoza, Junwei Hu, Pascal Boeckx, Wim Cornelis, Stefaan De Neve, Steven Sleutel","doi":"10.5194/soil-11-121-2025","DOIUrl":"https://doi.org/10.5194/soil-11-121-2025","url":null,"abstract":"Abstract. With climate change expected to intensify the occurrence and severity of droughts, the impacts of the groundwater table (GWT) depth and capillary rise on topsoil moisture may become critical drivers of biological activity. Consequently, the GWT depth could influence topsoil carbon (C) mineralization. In this study, undisturbed 200 cm long soil columns with three different textures (loamy sand, sandy loam and silt loam) were subjected to two artificial GWT depths (−165 and −115 cm) in the laboratory. We examined (1) upward moisture flow by capillary action along the soil profile, specifically into the top 20 cm of soil, and (2) the effect of the GWT on the decomposition of an added 13C-enriched substrate (ryegrass) over a period of 10 weeks, with limited wetting events representing a dry summer. A 50 cm difference in the GWT depth (−165 vs. −115 cm) resulted in different topsoil moisture values for the sandy loam (31 % vs. 38 % water-filled pore space – WFPS) and silt loam (33 % vs. 43 % WFPS) soils. In the loamy sand soil, GWT-induced moisture differences appeared only up to 85 cm above the GWT. The expected acceleration of the mineralization of the added ryegrass under a shallower GWT was not confirmed. In contrast, CO2 efflux pulses after some of the wetting events were even higher for the drier −165 cm GWT than for the −115 cm GWT across all three soil textures. Additionally, a model fitted to cumulative ryegrass mineralization showed a lower mineralization rate for the stable Cryegrass pool in the silt loam soil with the shallowest GWT, where capillary rise contributed most significantly to topsoil moisture, compared with other combinations of soil texture and GWT depth. These findings suggest that the upward capillary moisture flow, along with the resulting increase in topsoil moisture and the anticipated enhancement of biological activity and ryegrass mineralization, might have been counteracted by other processes. One possible explanation could be that rewetting may have triggered a stronger mineralization response, commonly known as the Birch effect, in drier topsoils compared with conditions in which the soil remained consistently wetter with a shallower GWT level. Based on our findings, inclusion of the process of texture-specific capillary supply from the GWT is required to adequately simulate moisture in the topsoil during droughts as they occurred over the past summers in northwestern Europe, depending on the GWT–texture combination. However, the net effect on topsoil C mineralization is complex and warrants further investigation, including the integration of processes related to fluctuations in soil moisture following rewetting.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"10 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143071986","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-30DOI: 10.5194/soil-11-105-2025
Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, Steven Sleutel
{"title":"Soil organic carbon mineralization is controlled by the application dose of exogenous organic matter","authors":"Orly Mendoza, Stefaan De Neve, Heleen Deroo, Haichao Li, Astrid Françoys, Steven Sleutel","doi":"10.5194/soil-11-105-2025","DOIUrl":"https://doi.org/10.5194/soil-11-105-2025","url":null,"abstract":"Abstract. Substantial input of exogenous organic matter (EOM) may be required to offset the projected decline in soil organic carbon (SOC) stocks in croplands caused by global warming. However, information on the effectivity of the EOM application dose in preserving SOC stocks is surprisingly limited. Therefore, we set up a 90 d incubation experiment with large soil volumes (sandy loam and silt loam) to compare the mineralization of EOM (13C-labelled ryegrass) and SOC as a function of three EOM application doses (0.5, 1.5, and 5 g dry matter kg−1 soil). The percentage of mineralized EOM was expected to increase linearly with a higher EOM dose in sandy loam soil and to level off in silt loam soil due to the limited O2 supply in order to maintain aerobic microbial activity. In the sandy loam soil, the percentage of mineralized EOM was not affected by EOM dose, while SOC mineralization increased proportionally with an increasing EOM dose (+49.6 mg C g−1 EOM). Likewise, the formation of microbial biomass carbon was proportional to EOM dose, suggesting no reduction in microbial growth efficiency at a higher C concentration. In the silt loam soil, a decreasing tendency in the percentage of mineralized EOM was apparent but could not be confirmed statistically. We therefore conclude that, as in the sandy loam, the proportion of EOM mineralization was not affected with an increasing EOM dose, while SOC mineralization increased at a higher rate than in the sandy loam soil (+117.2 mg C g−1 EOM). Consistently with this lack of response in the proportion of EOM mineralization to EOM dose, soil EH did not decrease with an increasing EOM dose, indicating no O2 limitations. In both soils, an increasing EOM dose possibly supplied energy for microbial growth and enzyme production, which, in turn, stimulated mineralization of native SOC (i.e. co-metabolism). The observed stimulation of soil macroporosity at higher EOM doses in the silt loam soil might have contributed to sustaining the aerobic conditions required for SOC mineralization. In sum, this experiment and our previous research suggest that EOM mineralization is mostly independent of EOM dose, but EOM dose modulates the mineralization of native SOC. Provisional C balances compared to unamended controls indicated that, at low doses, less C remained than when EOM was added at normal or high doses in sandy loam soil, while no effect was found in silt loam soil. These findings tentatively indicate that using larger EOM doses could help preserve more added EOM-C, but longer-term confirmation in the field will firstly be required before we can draw any conclusion for soil C management.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"74 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143056565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-28DOI: 10.5194/soil-11-95-2025
Sonya S. Altzitser, Yael G. Mishael, Nimrod Schwartz
{"title":"Organic pollutant oxidation on manganese oxides in soils – the role of calcite indicated by geoelectrical and chemical analyses","authors":"Sonya S. Altzitser, Yael G. Mishael, Nimrod Schwartz","doi":"10.5194/soil-11-95-2025","DOIUrl":"https://doi.org/10.5194/soil-11-95-2025","url":null,"abstract":"Abstract. Understanding phenolic-pollutant interactions with soil colloids has been a focus of extensive research, primarily under controlled conditions. This study addresses the need to explore these processes in a more natural, complex soil environment. We aim to shed light on the underlying mechanisms of hydroquinone (a representative phenolic pollutant) oxidation in ambient, MnO2-rich sandy soil within soil columns designed for breakthrough experiments. Our innovative approach combines noninvasive electrical measurements, crystallographic and microscopic analyses, and chemical profiling to comprehensively understand soil–pollutant interactions. Our study reveals that hydroquinone oxidation by MnO2 initiates a cascade of reactions, altering local pH, dissolving calcite, and precipitating amorphous Mn oxides, thereby showcasing a complex interplay of chemical processes. Our analysis, combining insights from chemistry and electrical measurements, reveals that the oxidation process led to a constant decrease in polarizing surfaces, as indicated by quadrature conductivity monitoring. Furthermore, dynamic shifts in the soil solution chemistry (changes in the calcium and manganese concentrations, pH, and electrical conductivity (EC)) correlated with the non-monotonous behavior of the in-phase conductivity. Our findings conclusively demonstrate that the noninvasive electrical method allows real-time monitoring of calcite dissolution, serving as a direct cursor to the oxidation process of hydroquinone and enabling the observation of chemical interactions in soil solution and on soil particle surfaces.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"20 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143050054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Effect of colloidal particle size on physicochemical properties and aggregation behaviors of two alkaline soils","authors":"Yuyang Yan, Xinran Zhang, Chenyang Xu, Junjun Liu, Feinan Hu, Zengchao Geng","doi":"10.5194/soil-11-85-2025","DOIUrl":"https://doi.org/10.5194/soil-11-85-2025","url":null,"abstract":"Abstract. Colloidal particles are the most active soil components, and they vary in elemental composition and environmental behaviors with the particle size due to the heterogeneous nature of natural soils. The purposes of the present study are to clarify how particle size affects the physicochemical properties and aggregation kinetics of soil colloids and to further reveal the underlying mechanisms. Soil colloidal fractions, from two alkaline soils – Anthrosol and Calcisol – were subdivided into three ranges: d<2 µm, d<1 µm and d<100 nm. The organic and inorganic carbon contents, clay mineralogy and surface electrochemical properties, including surface functional groups and zeta potentials, were characterized. Through a time-resolved light scattering technique, the aggregation kinetics of soil colloidal fractions were investigated, and their critical coagulation concentrations (CCCs) were determined. With decreasing colloidal particle diameter, the total carbon content, organic carbon, organic functional groups' content and illite content all increased. The zeta potential became less negative, and the charge variability decreased with decreasing particle diameter. The CCC values of Anthrosol and Calcisol colloids followed the descending order of d<100 nm, d<1 µm and d<2 µm. Compared with the course factions (d<1 and d<2 µm), soil nanoparticles were more abundant in organic carbon and more stable clay minerals (d<100 nm); thus they exhibited strongest colloidal suspension stability. The differences in organic matter contents and clay mineralogy are the fundamental reasons for the differences in colloidal suspension stability behind the size effects of Anthrosol and Calcisol colloids. The present study revealed the size effects of two alkaline soil colloids on carbon content, clay minerals, surface properties and suspension stability, emphasizing that soil nanoparticles are prone to be more stably dispersed instead of being aggregated. These findings can provide references for in-depth understanding of the environmental behaviors of the heterogeneous soil organic–mineral complexes.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"206 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143044074","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-24DOI: 10.5194/soil-11-67-2025
Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Roelof Versteeg, Sarah Garré
{"title":"Closing the phenotyping gap with non-invasive belowground field phenotyping","authors":"Guillaume Blanchy, Waldo Deroo, Tom De Swaef, Peter Lootens, Paul Quataert, Isabel Roldán-Ruíz, Roelof Versteeg, Sarah Garré","doi":"10.5194/soil-11-67-2025","DOIUrl":"https://doi.org/10.5194/soil-11-67-2025","url":null,"abstract":"Abstract. Breeding climate-robust crops is one of the needed pathways for adaptation to the changing climate. To speed up the breeding process, it is important to understand how plants react to extreme weather events such as drought or waterlogging in their production environment, i.e. under field conditions in real soils. Whereas a number of techniques exist for aboveground field phenotyping, simultaneous non-invasive belowground phenotyping remains difficult. In this paper, we present the first data set of the new HYDRAS (HYdrology, Drones and RAinout Shelters) open-access field-phenotyping infrastructure, bringing electrical resistivity tomography, alongside drone imagery and environmental monitoring, to a technological readiness level closer to what breeders and researchers need. This paper investigates whether electrical resistivity tomography (ERT) provides sufficient precision and accuracy to distinguish between belowground plant traits of different genotypes of the same crop species. The proof-of-concept experiment was conducted in 2023, with three distinct soybean genotypes known for their contrasting reactions to drought stress. We illustrate how this new infrastructure addresses the issues of depth resolution, automated data processing, and phenotyping indicator extraction. The work shows that electrical resistivity tomography is ready to complement drone-based field-phenotyping techniques to accomplish whole-plant high-throughput field phenotyping.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"110 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143026351","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-22DOI: 10.5194/egusphere-2024-4029
Sam G. Keenor, Rebekah Lee, Brian J. Reid
{"title":"Physical Protection of Soil Carbon Stocks Under Regenerative Agriculture","authors":"Sam G. Keenor, Rebekah Lee, Brian J. Reid","doi":"10.5194/egusphere-2024-4029","DOIUrl":"https://doi.org/10.5194/egusphere-2024-4029","url":null,"abstract":"<strong>Abstract.</strong> Regenerative agriculture is emerging as a strategy for carbon sequestration and climate change mitigation. However, for sequestration efforts to be successful, long-term stabilisation of Soil Organic Carbon (SOC) is needed. This can be achieved either through the uplift in recalcitrant carbon stocks, and/or through physical protection and occlusion of carbon within stable soil aggregates. In this research, soils from blackcurrant fields under regenerative management (0 to 7 years) were analysed with respect to: soil bulk density (SBD), aggregate fractionation (water stable aggregates vs. non-water stable aggregates (WSA and NWSA respectively)), soil carbon content, and carbon stability (recalcitrant vs. labile carbon). From this, long term carbon sequestration potential was calculated from both recalcitrant and physically occluded carbon stocks (stabilised carbon). Results indicated favourable shifts in the proportion of NWSA:WSA with time. This ratio increasing from 27.6 % : 5.8 % (control soil) to 12.6 % : 16.0 % (alley soil), and 16.1 % : 14.4 % (bush soil) after 7 years. While no significant (p ≥ 0.05)) changes in recalcitrant carbon stocks were observed after 7 years, labile carbon stocks increased significantly (p ≤ 0.05) from 10.44 t C ha<sup>-1</sup> to 13.87 t C ha<sup>-1</sup>. As a result, total sequesterable carbon (<em>stabilised carbon</em>) increased by 1.7 t C ha<sup>-1</sup> over the 7 year period, due to the occlusion and protection of this labile carbon stock within WSA fraction. This research provides valuable insights into the mechanisms of soil carbon stabilisation under regenerative agriculture practices and highlights the importance of soil aggregates in physically protecting carbon net-gains.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"38 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142992022","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-17DOI: 10.5194/egusphere-2024-3939
Yang Hu, Adam Cross, Zefang Shen, Johan Bouma, Raphael A. Viscarra Rossel
{"title":"On soil health and the pivotal role of proximal sensing","authors":"Yang Hu, Adam Cross, Zefang Shen, Johan Bouma, Raphael A. Viscarra Rossel","doi":"10.5194/egusphere-2024-3939","DOIUrl":"https://doi.org/10.5194/egusphere-2024-3939","url":null,"abstract":"<strong>Abstract.</strong> Soil underpins the functioning of all terrestrial ecosystems. Sustainable soil management is crucial to preventing further degradation of the non-renewable soil resources and achieving sustainability. The soil health concept has gained popularity as a means to this end and has been integrated into the policies of many countries and supranational organisations. We need an accurate definition and scientifically robust assessment framework for effectively measuring, monitoring and managing soil health, a framework that can effectively be communicated to the policy arena and to stakeholders. Linking soil health to the provision of ecosystem services in line with selected UN Sustainable Development Goals (SDGs) provides an effective link with the policy arena focusing on sustainable development. This is needed because lack of operational procedures to measure soil health leads to policies that ignore soils and focus on management measures. We review the literature on soil health, its conceptualisation, the current criteria for selecting indicators and thresholds, as well as the implementation of different soil health assessment frameworks. Most published studies on soil health focus on agriculture; however, a broader perspective that includes various terrestrial ecosystems is needed. Soil health assessments should not be limited to agricultural contexts. We highlight the significant potential of advanced sensing technologies to improve current soil health evaluations, which often rely on traditional methods that are time-consuming and costly. We propose a soil health assessment framework that prioritises ecological considerations and is free from anthropogenic bias. The proposed approach leverages modern technological advancements, including proximal sensing, remote sensing, machine learning, and sensor data fusion. This combined use of technologies enables objective, quantitative, reliable, rapid, cost-effective, scalable, and integrative soil health assessments.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"48 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142987533","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comprehensive increase in CO2 release by drying–rewetting cycles among Japanese forests and pastureland soils and exploring predictors of increasing magnitude","authors":"Yuri Suzuki, Syuntaro Hiradate, Jun Koarashi, Mariko Atarashi-Andoh, Takumi Yomogida, Yuki Kanda, Hirohiko Nagano","doi":"10.5194/soil-11-35-2025","DOIUrl":"https://doi.org/10.5194/soil-11-35-2025","url":null,"abstract":"Abstract. It is still difficult to precisely quantify and predict the effects of drying–rewetting cycles (DWCs) on soil carbon dioxide (CO2) release due to the paucity of studies using constant moisture conditions equivalent to the mean water content during DWC incubation. The present study was performed to evaluate overall trends in the effects of DWCs on CO2 release and to explore environmental and soil predictors for variations in the effect size in 10 Japanese forests and pastureland soils variously affected by volcanic ash during their pedogenesis. Over an 84 d incubation period including three DWCs, CO2 release was 1.3- to 3.7-fold greater than under continuous constant moisture conditions (p<0.05) with the same mean water content as in the DWC incubations. Analysis of the relations between this increasing magnitude of CO2 release by DWCs (IFCO2) and various environmental and soil properties revealed significant positive correlations between IFCO2 and soil organo-metal complex contents (p<0.05), especially pyrophosphate-extractable aluminum (Alp) content (r=0.74). Molar ratios of soil total carbon (C) and pyrophosphate-extractable C (Cp) to Alp contents and soil-carbon-content-specific CO2 release rate under continuous constant moisture conditions (qCO2_soc) were also correlated with IFCO2 (p<0.05). The covariations among Alp, total Cp/Alp, and Cp/Alp molar ratios and qCO2_soc suggested Alp to be the primary predictor of IFCO2. Additionally, soil microbial biomass C and nitrogen (N) levels were significantly lower in DWCs than under continuous constant moisture conditions, whereas there was no significant relation between the microbial biomass decrease and IFCO2. The present study showed a comprehensive increase in soil CO2 release by DWC in Japanese forests and pastureland soils, suggesting that Alp is a predictor of the effect size, likely due to vulnerability of organo-Al complexes to DWC.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"28 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142986807","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
SoilPub Date : 2025-01-14DOI: 10.5194/soil-11-51-2025
W. Marijn van der Meij, Svenja Riedesel, Tony Reimann
{"title":"Mixed Signals: interpreting mixing patterns of different soil bioturbation processes through luminescence and numerical modelling","authors":"W. Marijn van der Meij, Svenja Riedesel, Tony Reimann","doi":"10.5194/soil-11-51-2025","DOIUrl":"https://doi.org/10.5194/soil-11-51-2025","url":null,"abstract":"Abstract. Soil bioturbation plays a key role in soil functions such as carbon and nutrient cycling. Despite its importance, fundamental knowledge on how different organisms and processes impact the rates and patterns of soil mixing during bioturbation is lacking. However, this information is essential for understanding the effects of bioturbation in present-day soil functions and on long-term soil evolution. Luminescence, a light-sensitive mineral property, serves as a valuable tracer for long-term soil bioturbation over decadal to millennial timescales. The luminescence signal resets (bleaches) when a soil particle is exposed to daylight at the soil surface and accumulates when the particle is buried in the soil, acting as a proxy for subsurface residence times. In this study, we compiled three luminescence datasets of soil mixing by different biota and compared them to numerical simulations of bioturbation using the ChronoLorica soil-landscape evolution model. The goal was to understand how different mixing processes affect depth profiles of luminescence-based metrics, such as the modal age, width of the age distributions and fraction of the bleached particles. We focus on two main bioturbation processes: mounding (advective transport of soil material to the surface) and subsurface mixing (diffusive subsurface transport). Each process has a distinct effect on the luminescence metrics, which we summarized in a conceptual diagram to help with qualitative interpretation of luminescence-based depth profiles. A first attempt to derive quantitative information from luminescence datasets through model calibration showed promising results but also highlighted gaps in the data that must be addressed before accurate, quantitative estimates of bioturbation rates and processes are possible. The new numerical formulations of bioturbation, which are provided in an accompanying modelling tool, provide new possibilities for calibration and more accurate simulation of the processes in soil function and soil evolution models.","PeriodicalId":48610,"journal":{"name":"Soil","volume":"20 1","pages":""},"PeriodicalIF":6.8,"publicationDate":"2025-01-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142974609","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}