Journal of King Saud University-Computer and Information Sciences最新文献

筛选
英文 中文
A formal specification language and automatic modeling method of asset securitization contract 资产证券化合同的形式化规范语言和自动建模方法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-21 DOI: 10.1016/j.jksuci.2024.102163
Yang Li , Kai Hu , Jie Li , Kaixiang Lu , Yuan Ai
{"title":"A formal specification language and automatic modeling method of asset securitization contract","authors":"Yang Li ,&nbsp;Kai Hu ,&nbsp;Jie Li ,&nbsp;Kaixiang Lu ,&nbsp;Yuan Ai","doi":"10.1016/j.jksuci.2024.102163","DOIUrl":"10.1016/j.jksuci.2024.102163","url":null,"abstract":"<div><p>Asset securitization is an important financial derivative involving complicated asset transfer operations. Therefore, digitizing traditional asset securitization contracts will improve efficiency and facilitate reliability verification. Furthermore, accurate and verifiable requirement description is essential for collaborative development between financial professionals and software engineers. A domain specific language for writing asset securitization contract has been proposed. This solves the problem of difficulty for financial professionals to directly write smart contract by simplifying writing rules. However, due to existing design of the language focused on some simple scenarios, it is insufficient and informal to describe various detailed scenarios. What is more, there are still many reliability issues, such as verifying the correctness of the logical properties of the contract and ensuring the consistency between the contract text and the contract code, within the language in the generation and execution of smart contracts. To overcome the challenges stated above, we extend, simplify and innovate the syntax subset of the domain specific language and name it AS-SC (Asset Securitization – Smart Contract), which can be used by financial professionals to accurately describe requirements. Besides, because formal methods are math-based techniques that describe system properties and can generate programs in a more formal and reliable manner, we propose a semantic consistent code conversion method, named AS2EB, for converting from AS-SC to Event-B, a common and useful formal language. AS2EB method can be used by software engineers to verify requirements. The combination of AS-SC and AS2EB ensures consistency and reliability of the requirements, and reduces the cost of repeated communications and later testing. Taking the credit asset securitization contract as case study, the feasibility and rationality of AS-SC and AS2EB are validated. In addition, by carrying out experiments on three randomly selected real cases in different classic scenarios, we show high-efficiency and reliability of AS2EB method.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102163"},"PeriodicalIF":5.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002520/pdfft?md5=9af49e4b57c4f2d8d674b3287497b478&pid=1-s2.0-S1319157824002520-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142088599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
DAW-FA: Domain-aware adaptive weighting with fine-grain attention for unsupervised MRI harmonization DAW-FA:用于无监督磁共振成像协调的具有细粒度注意力的领域感知自适应加权法
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-21 DOI: 10.1016/j.jksuci.2024.102157
Linda Delali Fiasam , Yunbo Rao , Collins Sey , Stacy E.B. Aggrey , Seth Larweh Kodjiku , Kwame Opuni-Boachie Obour Agyekum , Annicet Razafindratovolahy , Isaac Adjei-Mensah , Chiagoziem Chima Ukwuoma , Francis Sam
{"title":"DAW-FA: Domain-aware adaptive weighting with fine-grain attention for unsupervised MRI harmonization","authors":"Linda Delali Fiasam ,&nbsp;Yunbo Rao ,&nbsp;Collins Sey ,&nbsp;Stacy E.B. Aggrey ,&nbsp;Seth Larweh Kodjiku ,&nbsp;Kwame Opuni-Boachie Obour Agyekum ,&nbsp;Annicet Razafindratovolahy ,&nbsp;Isaac Adjei-Mensah ,&nbsp;Chiagoziem Chima Ukwuoma ,&nbsp;Francis Sam","doi":"10.1016/j.jksuci.2024.102157","DOIUrl":"10.1016/j.jksuci.2024.102157","url":null,"abstract":"<div><p>Magnetic resonance (MR) imaging often lacks standardized acquisition protocols across various sites, leading to contrast variations that reduce image quality and hinder automated analysis. MR harmonization improves consistency by integrating data from multiple sources, ensuring reproducible analysis. Recent advances leverage image-to-image translation and disentangled representation learning to decompose anatomical and contrast representations, achieving consistent cross-site harmonization. However, these methods face two significant drawbacks: imbalanced contrast availability during training affects adaptation performance, and insufficient utilization of spatial variability in local anatomical structures limits model adaptability to different sites. To address these challenges, we propose Domain-aware Adaptive Weighting with Fine-Grain Attention (DAW-FA) for Unsupervised MRI Harmonization. DAW-FA incorporates an adaptive weighting mechanism and enhanced self-attention to mitigate MR contrast imbalance during training and account for spatial variability in local anatomical structures. This facilitates robust cross-site harmonization without requiring paired inter-site images. We evaluated DAW-FA on MR datasets with varying scanners and acquisition protocols. Experimental results show DAW-FA outperforms existing methods, with an average increase of 1.92 ± 0.56 in Peak Signal-to-Noise Ratio (PSNR) and 0.023 ± 0.011 in Structural Similarity Index Measure (SSIM). Additionally, we demonstrate DAW-FA’s impact on downstream tasks: Alzheimer’s disease classification and whole-brain segmentation, highlighting its potential clinical relevance.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102157"},"PeriodicalIF":5.2,"publicationDate":"2024-08-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002465/pdfft?md5=3acf98b5530f688283d52f1b4e9b2c0d&pid=1-s2.0-S1319157824002465-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041103","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
SARD: Fake news detection based on CLIP contrastive learning and multimodal semantic alignment SARD:基于 CLIP 对比学习和多模态语义配准的假新闻检测
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-14 DOI: 10.1016/j.jksuci.2024.102160
Facheng Yan, Mingshu Zhang, Bin Wei, Kelan Ren, Wen Jiang
{"title":"SARD: Fake news detection based on CLIP contrastive learning and multimodal semantic alignment","authors":"Facheng Yan,&nbsp;Mingshu Zhang,&nbsp;Bin Wei,&nbsp;Kelan Ren,&nbsp;Wen Jiang","doi":"10.1016/j.jksuci.2024.102160","DOIUrl":"10.1016/j.jksuci.2024.102160","url":null,"abstract":"<div><p>The automatic detection of multimodal fake news can be used to effectively identify potential risks in cyberspace. Most of the existing multimodal fake news detection methods focus on fully exploiting textual and visual features in news content, thus neglecting the full utilization of news social context features that play an important role in improving fake news detection. To this end, we propose a new fake news detection method based on CLIP contrastive learning and multimodal semantic alignment (SARD). SARD leverages cutting-edge multimodal learning techniques, such as CLIP, and robust cross-modal contrastive learning methods to integrate features of news-oriented heterogeneous information networks (N-HIN) with multi-level textual and visual features into a unified framework for the first time. This framework not only achieves cross-modal alignment between deep textual and visual features but also considers cross-modal associations and semantic alignments across different modalities. Furthermore, SARD enhances fake news detection by aligning semantic features between news content and N-HIN features, an aspect largely overlooked by existing methods. We test and evaluate SARD on three real-world datasets. Experimental results demonstrate that SARD significantly outperforms the twelve state-of-the-art competitors in fake news detection, with an average improvement of 2.89% in Mac.F1 score and 2.13% in accuracy compared to the leading baseline models across three datasets.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102160"},"PeriodicalIF":5.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002490/pdfft?md5=497eb195281148df13643994f201fe62&pid=1-s2.0-S1319157824002490-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142076508","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Parametrization of generalized triangle groups and construction of substitution-box for medical image encryption 广义三角形组的参数化和医学图像加密替代盒的构建
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-14 DOI: 10.1016/j.jksuci.2024.102159
Aqsa Zafar Abbasi , Ayesha Rafiq , Lioua Kolsi
{"title":"Parametrization of generalized triangle groups and construction of substitution-box for medical image encryption","authors":"Aqsa Zafar Abbasi ,&nbsp;Ayesha Rafiq ,&nbsp;Lioua Kolsi","doi":"10.1016/j.jksuci.2024.102159","DOIUrl":"10.1016/j.jksuci.2024.102159","url":null,"abstract":"&lt;div&gt;&lt;div&gt;The construction of strong encryption techniques is crucial to meet the increasing demand for secure transmission as well as storage of medical images. A substitution box (S-Box) is an important component of block ciphers and nonlinearity is an important attribute to consider while designing secure S-boxes. As a result, it is required to create new approaches for producing S-boxes with high non-linearity scores. We present a method of parametrization of the generalized triangle group &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; as linear groups, where &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;w&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;4&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; which is extended by the parametrization for triangle group &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mo&gt;〈&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mspace&gt;&lt;/mspace&gt;&lt;mo&gt;|&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mi&gt;t&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mi&gt;x&lt;/mi&gt;&lt;mi&gt;y&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;1&lt;/mn&gt;&lt;mo&gt;〉&lt;/mo&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;. This parametrization is then used for the construction of a highly nonlinear and secure substitution box designed for &lt;span&gt;&lt;math&gt;&lt;msup&gt;&lt;mrow&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;8&lt;/mn&gt;&lt;/mrow&gt;&lt;/msup&gt;&lt;/math&gt;&lt;/span&gt; elements, tailored specifically for the finite generalized triangle group case with &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;k&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; for &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;θ&lt;/mi&gt;&lt;mo&gt;=&lt;/mo&gt;&lt;mn&gt;64&lt;/mn&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt; which is parameter for all homomorphism from &lt;span&gt;&lt;math&gt;&lt;msub&gt;&lt;mrow&gt;&lt;mi&gt;H&lt;/mi&gt;&lt;/mrow&gt;&lt;mrow&gt;&lt;mn&gt;5&lt;/mn&gt;&lt;/mrow&gt;&lt;/msub&gt;&lt;/math&gt;&lt;/span&gt; to &lt;span&gt;&lt;math&gt;&lt;mrow&gt;&lt;mi&gt;P&lt;/mi&gt;&lt;mi&gt;S&lt;/mi&gt;&lt;mi&gt;L&lt;/mi&gt;&lt;mrow&gt;&lt;mo&gt;(&lt;/mo&gt;&lt;mn&gt;2&lt;/mn&gt;&lt;mo&gt;,&lt;/mo&gt;&lt;mi&gt;q&lt;/mi&gt;&lt;mo&gt;)&lt;/mo&gt;&lt;/mrow&gt;&lt;/mrow&gt;&lt;/math&gt;&lt;/span&gt;, possessing an order of 1200. We rigorously evaluate and analyze various common security indicators associated with the proposed substitution box. The proposed S-box is evaluated for picture encryption using various statistical approaches. Comparative analysis and additional scrutiny reveal promising attributes, affirming its suitability, efficacy, and potential applicability in the domain of medical image encryption. Our S-box achieves the necessary conditions for secu","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 8","pages":"Article 102159"},"PeriodicalIF":5.2,"publicationDate":"2024-08-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142319257","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anomalous behavior detection based on optimized graph embedding representation in social networks 基于优化图嵌入表示的社交网络异常行为检测
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-13 DOI: 10.1016/j.jksuci.2024.102158
Ling Xing , Shiyu Li , Qi Zhang , Honghai Wu , Huahong Ma , Xiaohui Zhang
{"title":"Anomalous behavior detection based on optimized graph embedding representation in social networks","authors":"Ling Xing ,&nbsp;Shiyu Li ,&nbsp;Qi Zhang ,&nbsp;Honghai Wu ,&nbsp;Huahong Ma ,&nbsp;Xiaohui Zhang","doi":"10.1016/j.jksuci.2024.102158","DOIUrl":"10.1016/j.jksuci.2024.102158","url":null,"abstract":"<div><p>Anomalous behaviors in social networks can lead to privacy leaks and the spread of false information. In this paper, we propose an anomalous behavior detection method based on optimized graph embedding representation. Specifically, the user behavior logs are first extracted into a social network user behavior temporal knowledge graph, based on which the graph embedding representation method is used to transform the network topology and temporal information in the user behavior knowledge graph into structural embedding vectors and temporal information embedding vectors, and the hybrid attention mechanism is used to merge the two types of vectors to obtain the final entity embedding to complete the prediction and complementation of the temporal knowledge graph of user behavior. We use graph neural networks, which use the temporal information of user behaviors as a time constraint and capture both user behavioral and semantic information. It converts the two parts of information into vectors for concatenation and linear transformation to obtain a comprehensive representation vector of the whole subgraph, as well as joint deep learning models to evaluate abnormal behavior. Finally, we perform experiments on the Yelp dataset to validate that our method achieves a 9.56% improvement in the F1-score.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102158"},"PeriodicalIF":5.2,"publicationDate":"2024-08-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002477/pdfft?md5=05d482d90b47cc00a3f0c9a6ac74bdda&pid=1-s2.0-S1319157824002477-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142048668","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Efficient Wear-Leveling-Aware Data Placement for LSM-Tree based key-value store on ZNS SSDs 基于 LSM 树的键值存储在 ZNS SSD 上的高效损耗平级感知数据放置
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-08 DOI: 10.1016/j.jksuci.2024.102156
Runyu Zhang, Lening Zhou, Mingjie Li, Yunlin Tan, Chaoshu Yang
{"title":"Efficient Wear-Leveling-Aware Data Placement for LSM-Tree based key-value store on ZNS SSDs","authors":"Runyu Zhang,&nbsp;Lening Zhou,&nbsp;Mingjie Li,&nbsp;Yunlin Tan,&nbsp;Chaoshu Yang","doi":"10.1016/j.jksuci.2024.102156","DOIUrl":"10.1016/j.jksuci.2024.102156","url":null,"abstract":"<div><p>Emerging Zoned Namespace (ZNS) is a new-style Solid State Drive (SSD) that manages data in a zoned manner, which can achieve higher performance by strictly obeying the sequential write mode in each zone and alleviating the redundant overhead of garbage collections. Unfortunately, flash memory usually has a serious problem with limited program/erase cycles. Meanwhile, inappropriate data placement strategy of storage systems can lead to imbalanced wear among zones, severely reducing the lifespan of ZNS SSDs. In this paper, we propose a Wear-Leveling-Aware Data Placement (WADP) to solve this problem with negligible performance cost. First, WADP employs a wear-aware empty zone allocation algorithm to quantify the resets of zones and choose the less-worn zone for each allocation. Second, to prevent long-term zone occupation of infrequently written data (namely cold data), we propose a wear-leveling cold zone monitoring mechanism to identify cold zones dynamically. Finally, WADP adopts a real-time I/O pressure-aware data migration mechanism to adaptively migrate cold data for achieving wear-leveling among zones. We implement the proposed WADP in ZenFS and evaluate it with widely used workloads. Compared with state-of-the-art solutions, i.e., LIZA and FAR, the experimental results show that WADP can significantly reduce the standard deviation of zone resets while maintaining decent performance.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102156"},"PeriodicalIF":5.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002453/pdfft?md5=b3f5e8288e8205e799d78965f416b571&pid=1-s2.0-S1319157824002453-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142041102","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Structure recovery from single omnidirectional image with distortion-aware learning 利用失真感知学习从单幅全向图像中恢复结构
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-08 DOI: 10.1016/j.jksuci.2024.102151
Ming Meng , Yi Zhou , Dongshi Zuo , Zhaoxin Li , Zhong Zhou
{"title":"Structure recovery from single omnidirectional image with distortion-aware learning","authors":"Ming Meng ,&nbsp;Yi Zhou ,&nbsp;Dongshi Zuo ,&nbsp;Zhaoxin Li ,&nbsp;Zhong Zhou","doi":"10.1016/j.jksuci.2024.102151","DOIUrl":"10.1016/j.jksuci.2024.102151","url":null,"abstract":"<div><p>Recovering structures from images with 180<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> or 360<span><math><msup><mrow></mrow><mrow><mo>∘</mo></mrow></msup></math></span> FoV is pivotal in computer vision and computational photography, particularly for VR/AR/MR and autonomous robotics applications. Due to varying distortions and the complexity of indoor scenes, recovering flexible structures from a single image is challenging. We introduce OmniSRNet, a comprehensive deep learning framework that merges distortion-aware learning with bidirectional LSTM. Utilizing a curated dataset with optimized panorama and expanded fisheye images, our framework features a distortion-aware module (DAM) for extracting features and a horizontal and vertical step module (HVSM) of LSTM for contextual predictions. OmniSRNet excels in applications such as VR-based house viewing and MR-based video surveillance, achieving leading results on cuboid and non-cuboid datasets. The code and dataset can be accessed at <span><span>https://github.com/mmlph/OmniSRNet/</span><svg><path></path></svg></span>.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102151"},"PeriodicalIF":5.2,"publicationDate":"2024-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002404/pdfft?md5=7e463774b7098668fef54fdff2ad3e21&pid=1-s2.0-S1319157824002404-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142013028","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Performance analysis of cloud resource allocation scheme with virtual machine inter-group asynchronous failure 带有虚拟机组间异步故障的云资源分配方案的性能分析
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-07 DOI: 10.1016/j.jksuci.2024.102155
Yuan Zhao , Kang Chen , Hongmin Gao , Yan Li
{"title":"Performance analysis of cloud resource allocation scheme with virtual machine inter-group asynchronous failure","authors":"Yuan Zhao ,&nbsp;Kang Chen ,&nbsp;Hongmin Gao ,&nbsp;Yan Li","doi":"10.1016/j.jksuci.2024.102155","DOIUrl":"10.1016/j.jksuci.2024.102155","url":null,"abstract":"<div><p>The recent rapid expansion of cloud computing has led to the prominence of Cloud Data Center (CDC) emerging. However, user requests’ waiting time might be greatly increased for a single physical machine (PM) in the CDC. We provide a cloud resource allocation scheme with virtual machine (VM) inter-group asynchronous failure. This method improves requests’ throughput and reduces wait time of requests. In particular, two PMs with different service rates for mapping multiple VMs are deployed in order to equally distribute cloud users’ requests, and we assume that the two PMs will fail and repair at different probabilities. A finite cache is also introduced to reduce the requests’ blocking rate. We model the VMs and user requests and create a 3-dimensional Markov chain (3DMC) to gauge the requests’ performance metrics. Numerical experiments are performed to obtain multiple performance metrics graphs for the requests. By comparing our scheme with the traditional cloud resource allocation scheme that involves synchronization failure in VM, we find that our scheme has an improvement in throughput, and each scheme has advantages and disadvantages in blocking rate of requests.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102155"},"PeriodicalIF":5.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002441/pdfft?md5=d0b96a172006c37607e17d7e394616cf&pid=1-s2.0-S1319157824002441-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141993465","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
LDNet: High Accuracy Fish Counting Framework using Limited training samples with Density map generation Network LDNet:利用密度图生成网络的有限训练样本实现高精度鱼类计数框架
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-07 DOI: 10.1016/j.jksuci.2024.102143
Ximing Li , Yitao Zhuang , Baihao You , Zhe Wang , Jiangsan Zhao , Yuefang Gao , Deqin Xiao
{"title":"LDNet: High Accuracy Fish Counting Framework using Limited training samples with Density map generation Network","authors":"Ximing Li ,&nbsp;Yitao Zhuang ,&nbsp;Baihao You ,&nbsp;Zhe Wang ,&nbsp;Jiangsan Zhao ,&nbsp;Yuefang Gao ,&nbsp;Deqin Xiao","doi":"10.1016/j.jksuci.2024.102143","DOIUrl":"10.1016/j.jksuci.2024.102143","url":null,"abstract":"<div><p>Fish counting is crucial in fish farming. Density map-based fish counting methods hold promise for fish counting in high-density scenarios; however, they suffer from ineffective ground truth density map generation. High labeling complexities and disturbance to fish growth during data collection are also challenging to mitigate. To address these issues, LDNet, a versatile network with attention implemented is introduced in this study. An imbalanced Optimal Transport (OT)-based loss function was used to effectively supervise density map generation. Additionally, an Image Manipulation-Based Data Augmentation (IMBDA) strategy was applied to simulate training data from diverse scenarios in fixed viewpoints in order to build a model that is robust to different environmental changes. Leveraging a limited number of training samples, our approach achieved notable performances with an 8.27 MAE, 9.97 RMSE, and 99.01% Accuracy on our self-curated Fish Count-824 dataset. Impressively, our method also demonstrated superior counting performances on both vehicle count datasets CARPK and PURPK+, and Penaeus_1k Penaeus Larvae dataset when only 5%–10% of the training data was used. These outcomes compellingly showcased our proposed approach with a wide applicability potential across various cases. This innovative approach can potentially contribute to aquaculture management and ecological preservation through counting fish accurately.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102143"},"PeriodicalIF":5.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002325/pdfft?md5=ec92694818fa8a8041843f53d8c6b66e&pid=1-s2.0-S1319157824002325-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141979572","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Leveraging syntax-aware models and triaffine interactions for nominal compound chain extraction 利用语法感知模型和三石蜡相互作用提取名词化合物链
IF 5.2 2区 计算机科学
Journal of King Saud University-Computer and Information Sciences Pub Date : 2024-08-07 DOI: 10.1016/j.jksuci.2024.102153
Yinxia Lou , Xun Zhu , Ming Chen , Donghong Ji , Junxiang Zhou
{"title":"Leveraging syntax-aware models and triaffine interactions for nominal compound chain extraction","authors":"Yinxia Lou ,&nbsp;Xun Zhu ,&nbsp;Ming Chen ,&nbsp;Donghong Ji ,&nbsp;Junxiang Zhou","doi":"10.1016/j.jksuci.2024.102153","DOIUrl":"10.1016/j.jksuci.2024.102153","url":null,"abstract":"<div><p>Recently, Nominal Compound Chain Extraction (NCCE) has been proposed to detect related mentions in a document to improve understanding of the document’s topic. NCCE involves longer span detection and more complicated rules for relation decisions, making it more difficult than previous chain extraction tasks, such as coreference resolution. Current methods achieve certain progress on the NCCE task, but they suffer from insufficient syntax information utilization and incomplete mention relation mining, which are helpful for NCCE. To fill these gaps, we propose a syntax-guided model using a triaffine interaction to improve the performance of the NCCE task. Instead of solely relying on the text information to detect compound mentions, we also utilize the noun-phrase (NP) boundary information in constituency trees to incorporate prior boundary knowledge. In addition, we use biaffine and triaffine operations to mine the mention interactions in the local and global context of a document. To show the effectiveness of our methods, we conduct a series of experiments on a human-annotated NCCE dataset. Experimental results show that our model significantly outperforms the baseline systems. Moreover, in-depth analyses reveal the effect of utilizing syntactic information and mention interactions in the local and global contexts.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102153"},"PeriodicalIF":5.2,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002428/pdfft?md5=68d28a739630245dadca6d14bfb1c2d3&pid=1-s2.0-S1319157824002428-main.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141984671","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信