Ximing Li , Yitao Zhuang , Baihao You , Zhe Wang , Jiangsan Zhao , Yuefang Gao , Deqin Xiao
{"title":"LDNet:利用密度图生成网络的有限训练样本实现高精度鱼类计数框架","authors":"Ximing Li , Yitao Zhuang , Baihao You , Zhe Wang , Jiangsan Zhao , Yuefang Gao , Deqin Xiao","doi":"10.1016/j.jksuci.2024.102143","DOIUrl":null,"url":null,"abstract":"<div><p>Fish counting is crucial in fish farming. Density map-based fish counting methods hold promise for fish counting in high-density scenarios; however, they suffer from ineffective ground truth density map generation. High labeling complexities and disturbance to fish growth during data collection are also challenging to mitigate. To address these issues, LDNet, a versatile network with attention implemented is introduced in this study. An imbalanced Optimal Transport (OT)-based loss function was used to effectively supervise density map generation. Additionally, an Image Manipulation-Based Data Augmentation (IMBDA) strategy was applied to simulate training data from diverse scenarios in fixed viewpoints in order to build a model that is robust to different environmental changes. Leveraging a limited number of training samples, our approach achieved notable performances with an 8.27 MAE, 9.97 RMSE, and 99.01% Accuracy on our self-curated Fish Count-824 dataset. Impressively, our method also demonstrated superior counting performances on both vehicle count datasets CARPK and PURPK+, and Penaeus_1k Penaeus Larvae dataset when only 5%–10% of the training data was used. These outcomes compellingly showcased our proposed approach with a wide applicability potential across various cases. This innovative approach can potentially contribute to aquaculture management and ecological preservation through counting fish accurately.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102143"},"PeriodicalIF":5.2000,"publicationDate":"2024-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002325/pdfft?md5=ec92694818fa8a8041843f53d8c6b66e&pid=1-s2.0-S1319157824002325-main.pdf","citationCount":"0","resultStr":"{\"title\":\"LDNet: High Accuracy Fish Counting Framework using Limited training samples with Density map generation Network\",\"authors\":\"Ximing Li , Yitao Zhuang , Baihao You , Zhe Wang , Jiangsan Zhao , Yuefang Gao , Deqin Xiao\",\"doi\":\"10.1016/j.jksuci.2024.102143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Fish counting is crucial in fish farming. Density map-based fish counting methods hold promise for fish counting in high-density scenarios; however, they suffer from ineffective ground truth density map generation. High labeling complexities and disturbance to fish growth during data collection are also challenging to mitigate. To address these issues, LDNet, a versatile network with attention implemented is introduced in this study. An imbalanced Optimal Transport (OT)-based loss function was used to effectively supervise density map generation. Additionally, an Image Manipulation-Based Data Augmentation (IMBDA) strategy was applied to simulate training data from diverse scenarios in fixed viewpoints in order to build a model that is robust to different environmental changes. Leveraging a limited number of training samples, our approach achieved notable performances with an 8.27 MAE, 9.97 RMSE, and 99.01% Accuracy on our self-curated Fish Count-824 dataset. Impressively, our method also demonstrated superior counting performances on both vehicle count datasets CARPK and PURPK+, and Penaeus_1k Penaeus Larvae dataset when only 5%–10% of the training data was used. These outcomes compellingly showcased our proposed approach with a wide applicability potential across various cases. This innovative approach can potentially contribute to aquaculture management and ecological preservation through counting fish accurately.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 7\",\"pages\":\"Article 102143\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-08-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002325/pdfft?md5=ec92694818fa8a8041843f53d8c6b66e&pid=1-s2.0-S1319157824002325-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002325\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002325","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
LDNet: High Accuracy Fish Counting Framework using Limited training samples with Density map generation Network
Fish counting is crucial in fish farming. Density map-based fish counting methods hold promise for fish counting in high-density scenarios; however, they suffer from ineffective ground truth density map generation. High labeling complexities and disturbance to fish growth during data collection are also challenging to mitigate. To address these issues, LDNet, a versatile network with attention implemented is introduced in this study. An imbalanced Optimal Transport (OT)-based loss function was used to effectively supervise density map generation. Additionally, an Image Manipulation-Based Data Augmentation (IMBDA) strategy was applied to simulate training data from diverse scenarios in fixed viewpoints in order to build a model that is robust to different environmental changes. Leveraging a limited number of training samples, our approach achieved notable performances with an 8.27 MAE, 9.97 RMSE, and 99.01% Accuracy on our self-curated Fish Count-824 dataset. Impressively, our method also demonstrated superior counting performances on both vehicle count datasets CARPK and PURPK+, and Penaeus_1k Penaeus Larvae dataset when only 5%–10% of the training data was used. These outcomes compellingly showcased our proposed approach with a wide applicability potential across various cases. This innovative approach can potentially contribute to aquaculture management and ecological preservation through counting fish accurately.
期刊介绍:
In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.