利用新型深度学习模型进行腰椎间盘检测和分类

IF 5.2 2区 计算机科学 Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS
Der Sheng Tan , Humaira Nisar , Kim Ho Yeap , Veerendra Dakulagi , Muhammad Amin
{"title":"利用新型深度学习模型进行腰椎间盘检测和分类","authors":"Der Sheng Tan ,&nbsp;Humaira Nisar ,&nbsp;Kim Ho Yeap ,&nbsp;Veerendra Dakulagi ,&nbsp;Muhammad Amin","doi":"10.1016/j.jksuci.2024.102148","DOIUrl":null,"url":null,"abstract":"<div><p>Low back pain (LBP) is a prevalent spinal issue, affecting eight out of ten individuals. Notably, lumbar intervertebral disc (IVD) abnormalities frequently contribute to LBP. To diagnose LBP, Magnetic Resonance Imaging (MRI) is crucial for obtaining detailed spinal images. This paper employs deep learning (DL) to detect and locate lumbar IVD in sagittal MR images. It further classifies lumbar IVDs as healthy or herniated, utilizing both novel convolutional neural network (CNN) and conventional CNN models. The dataset utilized comprises MR images from 32 patients, with 10 exhibiting healthy discs and the remaining 22 posing a mix of healthy and herniated discs, totaling 160 lumbar discs, incorporating 112 healthy and 48 herniated discs. In this study, ResNet-50 architecture in the Novel Lumbar IVD detection (NLID) model served as the feature extractor to segment the five lumbar IVDs from MR images. The features extracted from ResNet-50 were input into YOLOv2 for the identification of the region of interest (ROI). The findings indicate that optimal performance was achieved at the 22nd Rectified Linear Unit (ReLU) activation layer, boasting a remarkable 99.59% average precision, 97.22% F1-score, 94.59% precision, and a perfect 100% recall. This commendable performance consistently held above the 85% threshold until the 22nd ReLU activation layer. Regarding imbalanced dataset classification, AlexNet emerged as the frontrunner among other pre-trained networks, boasting the highest test accuracy of 90.63%, and an impressive F1 score of 88.77%. Meanwhile, the Novel Lumbar IVD Classification (NLIC) model achieved superior results with 93.75% test accuracy, and 92.27% F1-score. In the setting of the balanced dataset, NLIC achieved 96.88% test accuracy, and 96.46% F1-score with fewer epochs compared to AlexNet, affirming the robustness of the novel trained-from-scratch network. These findings distinctly underscore the effectiveness of CNNs in both medical image segmentation and classification.</p></div>","PeriodicalId":48547,"journal":{"name":"Journal of King Saud University-Computer and Information Sciences","volume":"36 7","pages":"Article 102148"},"PeriodicalIF":5.2000,"publicationDate":"2024-07-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S1319157824002374/pdfft?md5=242b16e1864b249a5d6a3f20dfd70a71&pid=1-s2.0-S1319157824002374-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Lumbar intervertebral disc detection and classification with novel deep learning models\",\"authors\":\"Der Sheng Tan ,&nbsp;Humaira Nisar ,&nbsp;Kim Ho Yeap ,&nbsp;Veerendra Dakulagi ,&nbsp;Muhammad Amin\",\"doi\":\"10.1016/j.jksuci.2024.102148\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Low back pain (LBP) is a prevalent spinal issue, affecting eight out of ten individuals. Notably, lumbar intervertebral disc (IVD) abnormalities frequently contribute to LBP. To diagnose LBP, Magnetic Resonance Imaging (MRI) is crucial for obtaining detailed spinal images. This paper employs deep learning (DL) to detect and locate lumbar IVD in sagittal MR images. It further classifies lumbar IVDs as healthy or herniated, utilizing both novel convolutional neural network (CNN) and conventional CNN models. The dataset utilized comprises MR images from 32 patients, with 10 exhibiting healthy discs and the remaining 22 posing a mix of healthy and herniated discs, totaling 160 lumbar discs, incorporating 112 healthy and 48 herniated discs. In this study, ResNet-50 architecture in the Novel Lumbar IVD detection (NLID) model served as the feature extractor to segment the five lumbar IVDs from MR images. The features extracted from ResNet-50 were input into YOLOv2 for the identification of the region of interest (ROI). The findings indicate that optimal performance was achieved at the 22nd Rectified Linear Unit (ReLU) activation layer, boasting a remarkable 99.59% average precision, 97.22% F1-score, 94.59% precision, and a perfect 100% recall. This commendable performance consistently held above the 85% threshold until the 22nd ReLU activation layer. Regarding imbalanced dataset classification, AlexNet emerged as the frontrunner among other pre-trained networks, boasting the highest test accuracy of 90.63%, and an impressive F1 score of 88.77%. Meanwhile, the Novel Lumbar IVD Classification (NLIC) model achieved superior results with 93.75% test accuracy, and 92.27% F1-score. In the setting of the balanced dataset, NLIC achieved 96.88% test accuracy, and 96.46% F1-score with fewer epochs compared to AlexNet, affirming the robustness of the novel trained-from-scratch network. These findings distinctly underscore the effectiveness of CNNs in both medical image segmentation and classification.</p></div>\",\"PeriodicalId\":48547,\"journal\":{\"name\":\"Journal of King Saud University-Computer and Information Sciences\",\"volume\":\"36 7\",\"pages\":\"Article 102148\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-07-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002374/pdfft?md5=242b16e1864b249a5d6a3f20dfd70a71&pid=1-s2.0-S1319157824002374-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of King Saud University-Computer and Information Sciences\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1319157824002374\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of King Saud University-Computer and Information Sciences","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1319157824002374","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

腰背痛(LBP)是一种常见的脊柱问题,每十个人中就有八个人会受到影响。值得注意的是,腰椎间盘(IVD)异常经常导致腰背痛。要诊断腰背痛,磁共振成像(MRI)对于获取详细的脊柱图像至关重要。本文采用深度学习(DL)技术检测和定位矢状面磁共振图像中的腰椎间盘突出症。它还利用新型卷积神经网络(CNN)和传统 CNN 模型,将腰椎间盘进一步分类为健康或疝气。所使用的数据集包括 32 名患者的 MR 图像,其中 10 名患者的椎间盘健康,其余 22 名患者的椎间盘健康和突出,共计 160 个腰椎间盘,包括 112 个健康椎间盘和 48 个突出椎间盘。在本研究中,新型腰椎间盘突出症检测(NLID)模型中的 ResNet-50 架构作为特征提取器,从磁共振图像中分割出五个腰椎间盘突出症。从 ResNet-50 提取的特征被输入 YOLOv2,用于识别感兴趣区(ROI)。研究结果表明,第 22 个整流线性单元(ReLU)激活层实现了最佳性能,平均精确度达到 99.59%,F1 分数达到 97.22%,精确度达到 94.59%,召回率达到 100%。在第 22 个 ReLU 激活层之前,这一值得称赞的性能一直保持在 85% 的阈值以上。在不平衡数据集分类方面,AlexNet 是其他预训练网络中的佼佼者,测试准确率最高,达到 90.63%,F1 分数高达 88.77%,令人印象深刻。同时,新型腰椎间盘突出症分类(NLIC)模型也取得了优异的成绩,测试准确率为 93.75%,F1 分数为 92.27%。在平衡数据集的环境中,NLIC 的测试准确率达到了 96.88%,F1 分数达到了 96.46%,与 AlexNet 相比,NLIC 的历时更短,这肯定了从零开始训练的新型网络的鲁棒性。这些发现清楚地表明了 CNN 在医学图像分割和分类中的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Lumbar intervertebral disc detection and classification with novel deep learning models

Low back pain (LBP) is a prevalent spinal issue, affecting eight out of ten individuals. Notably, lumbar intervertebral disc (IVD) abnormalities frequently contribute to LBP. To diagnose LBP, Magnetic Resonance Imaging (MRI) is crucial for obtaining detailed spinal images. This paper employs deep learning (DL) to detect and locate lumbar IVD in sagittal MR images. It further classifies lumbar IVDs as healthy or herniated, utilizing both novel convolutional neural network (CNN) and conventional CNN models. The dataset utilized comprises MR images from 32 patients, with 10 exhibiting healthy discs and the remaining 22 posing a mix of healthy and herniated discs, totaling 160 lumbar discs, incorporating 112 healthy and 48 herniated discs. In this study, ResNet-50 architecture in the Novel Lumbar IVD detection (NLID) model served as the feature extractor to segment the five lumbar IVDs from MR images. The features extracted from ResNet-50 were input into YOLOv2 for the identification of the region of interest (ROI). The findings indicate that optimal performance was achieved at the 22nd Rectified Linear Unit (ReLU) activation layer, boasting a remarkable 99.59% average precision, 97.22% F1-score, 94.59% precision, and a perfect 100% recall. This commendable performance consistently held above the 85% threshold until the 22nd ReLU activation layer. Regarding imbalanced dataset classification, AlexNet emerged as the frontrunner among other pre-trained networks, boasting the highest test accuracy of 90.63%, and an impressive F1 score of 88.77%. Meanwhile, the Novel Lumbar IVD Classification (NLIC) model achieved superior results with 93.75% test accuracy, and 92.27% F1-score. In the setting of the balanced dataset, NLIC achieved 96.88% test accuracy, and 96.46% F1-score with fewer epochs compared to AlexNet, affirming the robustness of the novel trained-from-scratch network. These findings distinctly underscore the effectiveness of CNNs in both medical image segmentation and classification.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
10.50
自引率
8.70%
发文量
656
审稿时长
29 days
期刊介绍: In 2022 the Journal of King Saud University - Computer and Information Sciences will become an author paid open access journal. Authors who submit their manuscript after October 31st 2021 will be asked to pay an Article Processing Charge (APC) after acceptance of their paper to make their work immediately, permanently, and freely accessible to all. The Journal of King Saud University Computer and Information Sciences is a refereed, international journal that covers all aspects of both foundations of computer and its practical applications.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信