{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s2589-5974(24)00053-4","DOIUrl":"https://doi.org/10.1016/s2589-5974(24)00053-4","url":null,"abstract":"Abstract not available","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"54 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628002","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s2589-5974(24)00050-9","DOIUrl":"https://doi.org/10.1016/s2589-5974(24)00050-9","url":null,"abstract":"Abstract not available","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"21 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-04-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628000","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tingting Cai, Chao Liu, Jianchun Jiang, Xianzhi Meng, Arthur J. Ragauskas, Kui Wang
{"title":"Innovative biphasic solvent systems for lignocellulosic biorefinery","authors":"Tingting Cai, Chao Liu, Jianchun Jiang, Xianzhi Meng, Arthur J. Ragauskas, Kui Wang","doi":"10.1016/j.trechm.2024.03.003","DOIUrl":"https://doi.org/10.1016/j.trechm.2024.03.003","url":null,"abstract":"<p>Bioconversion of lignocellulosics to ethanol is significantly hindered by biomass recalcitrance and, therefore, often requires a biomass pretreatment step. Furan-based compounds such as furfural (FF) and 5-hydroxymethylfurfural (HMF) are versatile building blocks for fuels and chemicals. However, their production during pretreatment often suffers from low yield and low separation efficiency. Biphasic solvent systems are capable of reducing biomass recalcitrance and extracting furans into the organic phase, thus preventing their degradation, increasing their yield, and allowing much easier separation. The development of a sustainable biphasic solvent system is essential to the furan-driven biorefinery and has drawn significant attention. This review systematically summarizes recent advances in the development of biphasic solvent systems in lignocellulosic biorefinery for improving the production of liquid fuels and furan-based compounds.</p>","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"10 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628172","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"The cutting edge of lantern-shaped cage methodologies","authors":"Zack T. Avery, Jess L. Algar, Dan Preston","doi":"10.1016/j.trechm.2024.03.002","DOIUrl":"https://doi.org/10.1016/j.trechm.2024.03.002","url":null,"abstract":"<p>Lantern-shaped cages are generally comprised of two square planar metal ions linked by four ditopic ligands. They mainly form easily and predictably and make a structure with a small cavity well-suited for host–guest chemistry. These cages have been at the forefront of efforts by chemists to develop strategies for enhanced structural complexity in self-assembled metallo-supramolecular systems, which in the past few years have reached new heights. This review looks at the techniques employed to garner this complexity, with focus on the latest examples and the most recently developed methodologies.</p>","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"130 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-04-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140630442","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Dong Liu, Lei Shi, Quanbin Dai, Xuanni Lin, Rashid Mehmood, Zi Gu, Liming Dai
{"title":"Functionalization of carbon nanotubes for multifunctional applications","authors":"Dong Liu, Lei Shi, Quanbin Dai, Xuanni Lin, Rashid Mehmood, Zi Gu, Liming Dai","doi":"10.1016/j.trechm.2024.02.002","DOIUrl":"https://doi.org/10.1016/j.trechm.2024.02.002","url":null,"abstract":"<p>Functionalized aligned and non-aligned carbon nanotubes (CNTs) have demonstrated outstanding physicochemical properties for a wide range of potential applications in energy conversion and storage, environmental remediation, and health care. In this review, we systematically summarize numerous innovative strategies developed for both covalent and non-covalent, functionalization of aligned and non-aligned CNTs with various heteroatom dopants, functional groups, small molecules, and/or macromolecules. Different unique chemical functionalization approaches reported for aligned CNTs include asymmetric and tube length-specific functionalization, multicomponent micropatterning, and end-opening for encapsulation/inner-wall modification. With a broader scope, we cover current challenges and future perspectives of CNTs in exciting new emerging fields, ranging from electrochemical catalysis for energy conversion/storage and environment protection, through sensing, to biomedical technologies.</p>","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"22 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-03-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140628169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"An open and shut case? Chemistry to control xanthene dyes","authors":"Joshua L. Turnbull, Evan W. Miller","doi":"10.1016/j.trechm.2024.01.006","DOIUrl":"https://doi.org/10.1016/j.trechm.2024.01.006","url":null,"abstract":"Fluorescent dyes are an indispensable part of the scientific enterprise. Xanthene-based fluorophores, such as fluorescein and rhodamine, have been in continual use across numerous fields since their invention in the late 19th century. Modern methods to synthesize and expand the scope of xanthene dye chemistry have enabled new colors, enhanced stability, and improved brightness. Modifications to the 3-position of xanthene dyes have been, until recently, less well-explored. Here, we discuss how small changes to the identity of the substituent at the 3-position of fluoresceins and rhodamines can profoundly alter the properties of xanthene dyes, with the potential to unlock new applications at the interface of chemistry and biology.","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"10 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-02-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140020114","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advanced electrode materials for microbial extracellular electron transfer","authors":"Shriya Grover, Lucinda Elizabeth Doyle","doi":"10.1016/j.trechm.2024.01.005","DOIUrl":"https://doi.org/10.1016/j.trechm.2024.01.005","url":null,"abstract":"Bioelectrochemical systems using electroactive microorganisms have applications including energy generation, microbial electrosynthesis, electrofermentation, and biosensing. Enhancing extracellular electron transfer (EET) between microorganisms and electrodes in these systems is a rapidly evolving field. This Review presents recent and emerging advances in the development of novel electrode materials, including incorporation of conductive polymers (CPs), common nanomaterials, MXenes, and metal–organic frameworks (MOFs) to increase the conductivity and surface area available for microbial electrochemical reactions. We also discuss electrodes of the future, focusing on computational rational design and approaches that consider the microorganisms’ perspective in the design process. These include patterning to achieve biologically relevant surface architecture and mimicking the extracellular matrix to form artificial biofilms.","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"96 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-02-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139951530","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Subscription and Copyright Information","authors":"","doi":"10.1016/s2589-5974(24)00012-1","DOIUrl":"https://doi.org/10.1016/s2589-5974(24)00012-1","url":null,"abstract":"","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"12 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926210","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Advisory Board and Contents","authors":"","doi":"10.1016/s2589-5974(24)00009-1","DOIUrl":"https://doi.org/10.1016/s2589-5974(24)00009-1","url":null,"abstract":"","PeriodicalId":48544,"journal":{"name":"Trends in Chemistry","volume":"34 1","pages":""},"PeriodicalIF":15.7,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139926214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}