Education for Chemical Engineers最新文献

筛选
英文 中文
Towards competency-based education in the chemical engineering undergraduate program in Uruguay: Three examples of integrating essential skills 乌拉圭化学工程本科课程中以能力为基础的教育:整合基本技能的三个例子。
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.05.004
E. Castelló, C. Santiviago, J. Ferreira, R. Coniglio, E. Budelli, V. Larnaudie, M. Passeggi, I. López
{"title":"Towards competency-based education in the chemical engineering undergraduate program in Uruguay: Three examples of integrating essential skills","authors":"E. Castelló,&nbsp;C. Santiviago,&nbsp;J. Ferreira,&nbsp;R. Coniglio,&nbsp;E. Budelli,&nbsp;V. Larnaudie,&nbsp;M. Passeggi,&nbsp;I. López","doi":"10.1016/j.ece.2023.05.004","DOIUrl":"10.1016/j.ece.2023.05.004","url":null,"abstract":"<div><p><span>In 2021, Universidad de la República in Uruguay approved a new Chemical Engineering undergraduate program that incorporates novel conceptual definitions such as competency-based education. This paper describes the process of defining the new curriculum plan and presents the program's structure, as well as specific and cross-disciplinary competencies. These competencies are then compared to the learning outcomes established in the guide for programs accreditation of the Institution of Chemical Engineers. To provide practical examples of how the competency-based approach was incorporated into the program, three specific cases are presented. The first case focuses on the implementation of the internship and </span>industry project. The second case illustrates the incorporation of computational tools as an essential part of different courses throughout the degree program. Finally, the third case describes a new design for the fluid mechanics laboratory that emphasizes hands-on learning and helps students develop several competencies.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 54-62"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46081489","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Incorporating process safety into a Colombian chemical engineering curriculum: A perception study 将过程安全纳入哥伦比亚化学工程课程:知觉研究
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.04.004
Carlos Ocampo-López, Luis Forero-Gaviria, Piedad Gañán-Rojo, Jorge Martínez-Arboleda, Fabio Castrillón-Hernández
{"title":"Incorporating process safety into a Colombian chemical engineering curriculum: A perception study","authors":"Carlos Ocampo-López,&nbsp;Luis Forero-Gaviria,&nbsp;Piedad Gañán-Rojo,&nbsp;Jorge Martínez-Arboleda,&nbsp;Fabio Castrillón-Hernández","doi":"10.1016/j.ece.2023.04.004","DOIUrl":"10.1016/j.ece.2023.04.004","url":null,"abstract":"<div><p>Process safety is a fundamental part of chemical engineering education and a key learning outcome to prepare generations of responsible and well-rounded engineers for the industry. The lack of courses and methodologies to prepare students with essential process safety training limits their consciousness about accident causes and prevention. It potentially leads to catastrophic and financially devastating events during professional practice. In this work, it was carried out a proposal for teaching process safety embedded within the chemical engineering program at Universidad Pontificia Bolivariana. The approach to teaching safety was defined as a disseminated curriculum, which consists of establishing a transversal axis of process safety, which includes different learning experiences distributed in key courses of the current curriculum, beginning from the first semester, and concluding in the capstone project as the major design experience. The teaching staff prepared a list of topics and detailed experiences to develop classroom activities and tasks on process safety. Therefore, the implementation was branded as “The moment of safety” to set a culture within the academic community and future engineers. In this work, two surveys were conducted to assess faculty members' perceptions. According to the survey findings, around 81.8 % of the students indicated a level of expectation between high and very high, and 93.9 % valued the methodology proposed for the program as correct. More than 88 % of faculty members evaluate the proposal as appropriate or very appropriate, and 70 % recommend the formulation of a new ABET student outcome for the program related to process safety. These findings emphasize the significance of continuing to work through curricula to build a long-term process safety culture.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 45-53"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47062286","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Training strategies from the undergraduate degree in chemical engineering focused on bioprocesses using PBL in the last decade 在过去的十年中,化学工程本科学位的培训策略集中在使用PBL的生物过程上
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.05.008
Leidy Rendón-Castrillón, Margarita Ramírez-Carmona, Carlos Ocampo-López
{"title":"Training strategies from the undergraduate degree in chemical engineering focused on bioprocesses using PBL in the last decade","authors":"Leidy Rendón-Castrillón,&nbsp;Margarita Ramírez-Carmona,&nbsp;Carlos Ocampo-López","doi":"10.1016/j.ece.2023.05.008","DOIUrl":"10.1016/j.ece.2023.05.008","url":null,"abstract":"<div><p>Global engineering education addresses the development of professional competencies in undergraduates to prepare professionals capable of solving complex technical problems under social, environmental, and economic challenges. In this work, training was carried out to incorporate the bioprocess research of the chemical engineering students at Universidad Pontificia Bolivariana in Medellin, Colombia, using a project-based learning methodology (PBL). An open call was made to the students, and they were challenged to build a prototype which they had to support together with a written report as evidence for their admission to the research hotbed and assign them research projects in bioprocesses. In the last decade, 276 students participated in the hotbed generating 21 conference presentations, four software, 14 research articles, and 16 academic awards. In parallel, a survey was conducted to analyze the perception of graduates participating in the hotbed according to a list of 17 competency criteria relevant to the chemical engineering program. It was found that the average perception is at the highest levels (4−5), which indicates that most of the graduates value the significant contribution made by the CIBIOT hotbed to the development of a professional in experimentation, communication, and acquisition of new knowledge.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 104-116"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46030635","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A perspective on the synergistic potential of artificial intelligence and product-based learning strategies in biobased materials education 人工智能与基于产品的学习策略在生物材料教育中的协同潜力展望
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.05.005
Ronald Marquez , Nelson Barrios , Ramon E. Vera , Maria E. Mendez , Laura Tolosa , Franklin Zambrano , Yali Li
{"title":"A perspective on the synergistic potential of artificial intelligence and product-based learning strategies in biobased materials education","authors":"Ronald Marquez ,&nbsp;Nelson Barrios ,&nbsp;Ramon E. Vera ,&nbsp;Maria E. Mendez ,&nbsp;Laura Tolosa ,&nbsp;Franklin Zambrano ,&nbsp;Yali Li","doi":"10.1016/j.ece.2023.05.005","DOIUrl":"10.1016/j.ece.2023.05.005","url":null,"abstract":"<div><p><span>The integration of product-based learning strategies in Materials in Chemical Engineering education is crucial for students to gain the skills and competencies required to thrive in the emerging </span>circular bioeconomy. Traditional materials engineering education has often relied on a transmission teaching approach, in which students are expected to passively receive information from instructors. However, this approach has shown to be inadequate under the current circumstances, in which information is readily available and innovative tools such as artificial intelligence and virtual reality environments are becoming widespread (e.g., metaverse). Instead, we consider that a critical goal of education should be to develop aptitudes and abilities that enable students to generate solutions and products that address societal demands. In this work, we propose innovative strategies, such as product-based learning methods and GPT (Generative Pre-trained Transformer) artificial intelligence text generation models, to modify the focus of a Materials in Chemical Engineering course from non-sustainable materials to sustainable ones, aiming to address the critical challenges of our society. This approach aims to achieve two objectives: first to enable students to actively engage with raw materials and solve real-world challenges, and second, to foster creativity and entrepreneurship skills by providing them with the necessary tools to conduct brainstorming sessions and develop procedures following scientific methods. The incorporation of circular bioeconomy concepts, such as renewable resources, waste reduction, and resource efficiency into the curriculum provides a framework for students to understand the environmental, social, and economic implications in Chemical Engineering. It also allows them to make informed decisions within the circular bioeconomy framework, benefiting society by promoting the development and adoption of sustainable technologies and practices.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 164-180"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43134578","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Low-cost heat exchanger benches for remote operation 用于远程操作的低成本热交换器工作台
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.04.002
Andrew J. Furlong, Michael J. Pegg
{"title":"Low-cost heat exchanger benches for remote operation","authors":"Andrew J. Furlong,&nbsp;Michael J. Pegg","doi":"10.1016/j.ece.2023.04.002","DOIUrl":"10.1016/j.ece.2023.04.002","url":null,"abstract":"<div><p>The COVID-19 pandemic created significant challenges in operating the lab component of undergraduate courses and promoting active learning, with only a short time available to implement alternative teaching methods. In this work a low-cost platform for distance operation and assessment of replaceable bench-scale heat exchangers was developed to provide students an opportunity to observe the transient and steady-state behavior of heat exchangers while unable to access lab facilities. Each workbench had a new material cost of approximately C$5 000. Operation of physical equipment provided students the opportunity to observe non-ideal behavior and compare various heat transfer correlations which may not be seen in process simulators. The developed platform implemented an Arduino microcontroller for low-cost process control. Equipment was seamlessly slotted in to the existing course upon the return to on-campus learning and provided a more stable system when compared to previously existing lab experiments. Most learning outcomes were observed in remote and in-lab experiments and challenges faced in remote operation are highlighted. No statistically significant difference was observed in student performance between students completing lab experiments remotely and students completing experiments in-lab.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 14-20"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44763652","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A capstone laboratory course on separations, reactions and control operations 关于分离、反应和控制操作的顶尖实验室课程
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.03.001
Alvaro Orjuela, Paulo César Narváez-Rincón, Gabriel E. Rocha
{"title":"A capstone laboratory course on separations, reactions and control operations","authors":"Alvaro Orjuela,&nbsp;Paulo César Narváez-Rincón,&nbsp;Gabriel E. Rocha","doi":"10.1016/j.ece.2023.03.001","DOIUrl":"10.1016/j.ece.2023.03.001","url":null,"abstract":"<div><p>This work describes current teaching methodologies applied in the Unit Operations Laboratories (UOL) at the National University of Colombia (UNAL) Bogota campus, with emphasis in the capstone course of Laboratory of Separations, Reactions and Control Operations (LSRCO). This class is carried out using a wide variety of pilot and bench scale equipment within a ∼ 1000 m<sup>2</sup><span> laboratory facilities. The description of the course includes the context where it was developed, its goals and the intended student outcomes. Problem-based methodologies deployed during laboratory sessions are described, and required preparatory and final reporting materials together with examples of projects conceived and developed by students are described. The lasts are related to process control, separations, reaction engineering and entire process design problems. Additionally, course evaluation and grading scheme is presented including student surveys and final grades from recent semesters. Finally, tools, rubrics and results from the assessment of ABET’s student outcomes are summarized. Based upon the obtained results, it was observed that the working and evaluation methodologies have been well received by students, and besides improving technical competences, those have been effective to enhance their core skills and to promote the development of a research and entrepreneurial attitude.</span></p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 1-13"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47816240","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Mesocurriculum modernization of a chemical engineering program: The case of a high-impact regional university in Colombia 化学工程课程的中课程现代化:以哥伦比亚一所影响巨大的地区大学为例
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.06.002
David Gómez-Ríos, Howard Ramírez-Malule, Nilson Marriaga-Cabrales
{"title":"Mesocurriculum modernization of a chemical engineering program: The case of a high-impact regional university in Colombia","authors":"David Gómez-Ríos,&nbsp;Howard Ramírez-Malule,&nbsp;Nilson Marriaga-Cabrales","doi":"10.1016/j.ece.2023.06.002","DOIUrl":"10.1016/j.ece.2023.06.002","url":null,"abstract":"<div><p><span>In Colombia there are few chemical engineering programs and those have been historically linked to the industrial development of the country, supporting the training needs for industrial development in several regions of economic importance. The southwestern Colombian region contributes with the largest industrial production in the country, and the chemical engineering program of Universidad del Valle has been the only one in the region for 78 years. The last curriculum reform took place 20 years ago and the accelerated technological change urged the adoption of deep changes in the curriculum structure. A student-centered constructivist approach was applied in the faculty-wide transformation in the mesocurriculum and microcurriculum levels, defining the so-called Sensitivities, Capacities and Competencies (SCCs) as the set of attitudes, skills and knowledge necessary for an integral performance of engineers. Those were considered from two standpoints: general and disciplinary formation. In the disciplinary level, the historic traditional pillars of chemical engineering were maintained, but taking advantage on the areas of academic research, development and innovation (R+D+I) expertise demanded by the </span>industry around the university in addition to transversal priority areas for modern chemical engineering professionals. This contribution discussed the elements of the curriculum reform for modernizing the chemical engineering curriculum of a high-impact program in a stablished university with a regional vocation.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 181-190"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45057411","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
An institutional modernization project in chemical engineering education in Brazil: Developing broader competencies for societal challenges 巴西化学工程教育机构现代化项目:培养应对社会挑战的更广泛能力
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.04.003
Bruno Ramos, Moisés Teles dos Santos, Ardson S. Vianna Jr., Luiz Kulay
{"title":"An institutional modernization project in chemical engineering education in Brazil: Developing broader competencies for societal challenges","authors":"Bruno Ramos,&nbsp;Moisés Teles dos Santos,&nbsp;Ardson S. Vianna Jr.,&nbsp;Luiz Kulay","doi":"10.1016/j.ece.2023.04.003","DOIUrl":"10.1016/j.ece.2023.04.003","url":null,"abstract":"<div><p><span>Contemporary societal challenges put in evidence the need to improve the hard and soft skills of chemical engineering students. To promote a more student-centered approach, active-based learning, and improved assessment strategies, the Brazilian government approved the so-called New National Curriculum Guidelines (NCG) for engineering courses. To comply with those guidelines, the Department of Chemical Engineering of the Polytechnic School of the University of São Paulo (USP) is currently developing an educational modernization process sponsored by the Fulbright Commission in Brazil, called </span><span><em>Special Program for Modernization of </em><em>Undergraduate Education</em></span><span> (PMG). The project is based on three pillars of modernization: content (what), form (how), and infrastructure (where). This paper describes initiatives in each of those pillars: content and format changes in Chemical Reaction Engineering<span> and Process Safety courses and the creation of new spaces for a student-centered approach (an innovative classroom layout and a makerspace). By gathering two concrete classroom experiences guided by a broader institutional educational policies (the PMG project and the NCG), this paper highlights that slight changes can lead to great improvements in the learning process, leading to more engagement in the development of hard skills while favoring improvements in soft skills, such as communication, team-based work, and critical thinking.</span></span></p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 35-44"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46048951","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
A competency-based chemical engineering curriculum at the University of Campinas in Brazil 巴西坎皮纳斯大学以能力为基础的化学工程课程
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.04.001
Luís Fernando Mercier Franco, Aline Carvalho da Costa, Ambrósio Florêncio de Almeida Neto, Ângela Maria Moraes, Elias Basile Tambourgi, Everson Alves Miranda, Guilherme José de Castilho, Gustavo Doubek, José Vicente Hallak Dangelo, Leonardo Vasconcelos Fregolente, Liliane Maria Ferrareso Lona, Lucimara Gaziola de La Torre, Luz Adriana Alvarez, Mariana Conceição da Costa, Patricia Fazzio Martins Martinez, Roberta Ceriani, Roger Josef Zemp, Roniérik Pioli Vieira, Rubens Maciel Filho, Sávio Souza Venâncio Vianna, Raphael Soeiro Suppino
{"title":"A competency-based chemical engineering curriculum at the University of Campinas in Brazil","authors":"Luís Fernando Mercier Franco,&nbsp;Aline Carvalho da Costa,&nbsp;Ambrósio Florêncio de Almeida Neto,&nbsp;Ângela Maria Moraes,&nbsp;Elias Basile Tambourgi,&nbsp;Everson Alves Miranda,&nbsp;Guilherme José de Castilho,&nbsp;Gustavo Doubek,&nbsp;José Vicente Hallak Dangelo,&nbsp;Leonardo Vasconcelos Fregolente,&nbsp;Liliane Maria Ferrareso Lona,&nbsp;Lucimara Gaziola de La Torre,&nbsp;Luz Adriana Alvarez,&nbsp;Mariana Conceição da Costa,&nbsp;Patricia Fazzio Martins Martinez,&nbsp;Roberta Ceriani,&nbsp;Roger Josef Zemp,&nbsp;Roniérik Pioli Vieira,&nbsp;Rubens Maciel Filho,&nbsp;Sávio Souza Venâncio Vianna,&nbsp;Raphael Soeiro Suppino","doi":"10.1016/j.ece.2023.04.001","DOIUrl":"10.1016/j.ece.2023.04.001","url":null,"abstract":"<div><p>Engineering education is being called upon to move to a student-centered teaching. New challenges demand a curriculum that considers a set of competencies to enable engineers to learn autonomously and to develop solid technical and relevant soft skills. We present a top-down methodology for developing a competency-based curricula, which was employed to conceive a new chemical engineering curriculum at the University of Campinas. Our methodology is based on four main steps: i) definition of the desired profile of students with a bachelor’s degree in Chemical Engineering and their underlying competencies; ii) delineation of learning-experiences itineraries; iii) a macro conception of the curriculum entailing the logical-temporal arrangement of its learning-experiences itineraries; and the iv) establishment of each curricular component with its learning objectives. This new curriculum is integrated into the external society by experiences that engage students to practice social responsibility and develop technology based on the needs of society. Graduates’ profile and competencies were defined based on extensive surveys. We discuss how active learning methodologies can be an intrinsic part of the curriculum development process and how assessment strategies must fit the learning goals established for each curricular component. Finally, we discuss the current challenges of implementing and evaluating a competency-based curriculum.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 21-34"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48307170","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Student experiences from virtual reality-based chemistry laboratory exercises 学生体验基于虚拟现实的化学实验练习
IF 3.9 2区 教育学
Education for Chemical Engineers Pub Date : 2023-07-01 DOI: 10.1016/j.ece.2023.06.004
Panu Viitaharju, Minna Nieminen, Jarno Linnera, Kirsi Yliniemi, Antti J. Karttunen
{"title":"Student experiences from virtual reality-based chemistry laboratory exercises","authors":"Panu Viitaharju,&nbsp;Minna Nieminen,&nbsp;Jarno Linnera,&nbsp;Kirsi Yliniemi,&nbsp;Antti J. Karttunen","doi":"10.1016/j.ece.2023.06.004","DOIUrl":"10.1016/j.ece.2023.06.004","url":null,"abstract":"<div><p>This paper describes a practical case study on the benefits and feasibility of a virtual laboratory as a part of chemistry laboratory exercises. Three different objectives that must fit together to create an efficient Virtual Reality (VR) learning experience were found: relevant information content, learning design, and technical feasibility. To achieve these multidisciplinary goals, a simple framework for designing VR learning materials was created. A 360-VR version of a chemistry laboratory exercise was designed and created following this framework. Data on its effectiveness was collected on a laboratory course with over 150 first-year chemical engineering students. The students completed the same laboratory exercise both as a virtual laboratory and in a real student laboratory. In the student feedback, students clearly stated that virtual laboratories cannot replace the experience in a real laboratory, and that the virtual laboratory exercises did not directly increase student motivation. Nevertheless, students showed a very positive attitude towards virtual learning materials and suggested including even more activating materials such as quizzes and interactive videos in the learning materials. Only a few students reported any downsides related to the virtual laboratory exercise. Overall, it was shown that our design principles work in practice as the students reported several real benefits when they completed a virtual laboratory exercise before the real-life laboratory exercise. These benefits included learning the correct way that the laboratory exercise proceeds and how to perform certain tasks correctly.</p></div>","PeriodicalId":48509,"journal":{"name":"Education for Chemical Engineers","volume":"44 ","pages":"Pages 191-199"},"PeriodicalIF":3.9,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47826066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":2,"RegionCategory":"教育学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信