{"title":"Corrections to the Electrical Capacitance of Deformed Lipid Membrane","authors":"O. V. Kondrashov, S. A. Akimov","doi":"10.1134/S1990747824700028","DOIUrl":"10.1134/S1990747824700028","url":null,"abstract":"<p>The thickness of the lipid membrane is its substantial characteristics. Usually, the thickness of a lipid bilayer is experimentally determined by measuring its electrical capacitance in the approximation of a plane-parallel capacitor. However, membranes formed from a mixture of lipids or containing membrane-deforming inclusions are laterally inhomogeneous, and for them the plane-parallel capacitor approximation generally does not hold. In this work, corrections to the electrical capacitance resulting from deformation of the lipid membrane were numerically calculated. It is shown that the model of a planar capacitor (or their parallel connections), in the general case, does not quantitatively describe these corrections due to the non-zero tangential component of the electric field strength. It is shown that the relative deviation of corrections to the electrical capacitance calculated in various simplified models from the exact solution can reach 50%.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 1","pages":"16 - 21"},"PeriodicalIF":1.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577137","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
N. V. Nifantova, A. G. Shishkov, O. M. Korenkova, E. Sopova, L. Brodin, O. Shupliakov
{"title":"Organization of the Reserve Pool of Synaptic Vesicles in Nerve Terminals Lacking Protein Liquid Phase Components","authors":"N. V. Nifantova, A. G. Shishkov, O. M. Korenkova, E. Sopova, L. Brodin, O. Shupliakov","doi":"10.1134/S1990747824700077","DOIUrl":"10.1134/S1990747824700077","url":null,"abstract":"<p>The protein endophilin A, which in the mammalian genome is encoded by three genes, <i>endophilin A1</i>, <i>A2</i>, and <i>A3</i>, regulates the synaptic vesicle cycle during exo- and endocytosis, and it is present in the reserve pool of synaptic vesicles (SVs), where its function is unknown. In vitro experiments suggest that endophilin, via its SH3 domain interactions, incorporates several components into the protein liquid phase that organizes SVs in the reserve pool. We investigated the effect of deletion of the genes encoding endophilin and one of its binding partners, dynamin, on the organization of SVs in living synapses formed by cortical neurons in culture. Our experiments showed that deletion of endophilin genes does not change the density of SVs in the reserve pool. At the same time, the deletion of <i>dynamin 1</i> and <i>dynamin 3</i> genes leads to a significant increase in the vesicle density. We suggest that other SH3-domain-containing proteins, which are components of the protein liquid phase, complement the function of endophilin in the SV reserve pool.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"18 1","pages":"51 - 54"},"PeriodicalIF":1.1,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140577497","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. V. Ryzhova, E. A. Korneva, T. V. Tobias, E. A. Protasov, E. A. Vershinina
{"title":"Interferon α2b As a Modulator of the Afferent Glutamatergic Synapse of the Frog Vestibular Apparatus","authors":"I. V. Ryzhova, E. A. Korneva, T. V. Tobias, E. A. Protasov, E. A. Vershinina","doi":"10.1134/S1990747823060077","DOIUrl":"10.1134/S1990747823060077","url":null,"abstract":"<p>It is known that the molecules of innate and adaptive immunity can influence the synaptic activity of the central nervous system (CNS). Interferons (IFNs) are commonly used to treat viral and oncological diseases, although they are classified as ototoxic substances and their impact on the synaptic activity of the inner ear is not yet fully understood. In this study, the effect of interferon α2b (IFN-α2b) on the function of afferent glutamatergic synapse in the presence of drug application to the synaptic zone has been analyzed. The study was performed on the isolated vestibular apparatus of a frog (<i>Rana temporaria</i>) using the multiunit recording. Results showed that IFN-α2b (0.2–40 ng/mL) caused an increase in the background pulse activity of afferent fibers, followed by a decrease in the frequency of discharges, especially at high concentrations of IFN-α2b. Additionally, IFN-α2b reduced the glutamate (<i>L</i>-Glu) evoked response and influenced the level of afferent fiber activity restored by <i>L</i>-Glu when the glutamate release from hair cells was blocked in hyper-Mg<sup>2+</sup> and hypo-Ca<sup>2+</sup> solution. This indicates that IFN-α2b has a postsynaptic effect. Overall, the findings suggest that IFN has a neuromodulating effect on the synaptic activity of the afferent synapse of the vestibular apparatus.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S65 - S72"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499307","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
V. S. Frolova, A. D. Ivanova, M. S. Konorova, Yu. B. Shmukler, D. A. Nikishin
{"title":"Spatial Organization of the Components of the Serotonergic System in the Early Mouse Development","authors":"V. S. Frolova, A. D. Ivanova, M. S. Konorova, Yu. B. Shmukler, D. A. Nikishin","doi":"10.1134/S1990747823060041","DOIUrl":"10.1134/S1990747823060041","url":null,"abstract":"<p>Serotonin is a regulator of early embryonic development and has a complete functional system in preimplantation mammalian embryos. In the present work, the spatial distribution of serotonin, the vesicular monoamine transporter VMAT2, and the 5-HT<sub>1D</sub> and 5-HT<sub>2A</sub> receptors at different stages of early embryonic development was described. Serotonin, the VMAT2 transporter, and the 5-HT<sub>1D</sub> receptor are visualized in the cortical compartment of cells, whereas the 5-HT<sub>2A</sub> receptor has a more even distribution throughout the cytoplasm. The comparison showed that there were no statistically significant differences between the immunoreactive particle sizes of serotonin and the VMAT2 transporter, suggesting the presence of vesicles in which serotonin accumulates with the involvement of VMAT2 for further intercellular signal transduction. Moreover, the patterns of immunoreactivity of the two serotonin receptors, 5-HT<sub>1D</sub> and 5-HT<sub>2A</sub>, differ markedly, which may indicate that they simultaneously serve different functions in early embryogenesis.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S59 - S64"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499223","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Y. A. Voronina, A. V. Fedorov, M. A. Chelombitko, U. E. Piunova, V. S. Kuzmin
{"title":"α1-Adrenergic Receptors Control the Activity of Sinoatrial Node by Modulating Transmembrane Transport of Chloride Anions","authors":"Y. A. Voronina, A. V. Fedorov, M. A. Chelombitko, U. E. Piunova, V. S. Kuzmin","doi":"10.1134/S1990747823070061","DOIUrl":"10.1134/S1990747823070061","url":null,"abstract":"<p>Norepinephrine (NE), which is released by sympathetic nerve endings, causes an increase in the frequency of spontaneous action potentials in the pacemaker cardiomyocytes of the sinoatrial node (SAN) of the heart. This results in an increase in heart rate (HR). Two types of postsynaptic adrenoreceptors (ARs), α1-AR and β-AR, mediate the effects of NE. The role of α1-AR in the sympathetic control of heart rate and SAN automaticity, as well as the membrane mechanisms involved in α1-AR-mediated pacemaker control, have not yet been elucidated. In this study, we utilized immunofluorescence confocal microscopy to examine the distribution of α1A-AR in the SAN of rats. Additionally, we assessed the expression of α1A-AR mRNA in the SAN tissue using RT-PCR. Furthermore, we investigated the impact of α1-AR stimulation on key functional parameters of the pacemaker, including the corrected sinus node recovery time (SNRT/cSNRT) and the SAN accommodation, using the Langendorff perfused heart technique. We also used optical mapping of the electrical activity of perfused, isolated tissue preparations to study the effect of α1-AR stimulation on the spatiotemporal characteristics of SAN excitation. We tested the effects of chloride transmembrane conductance blockade on alteration of functional parameters and pattern of SAN excitation caused by α1-AR. Fluorescent signals corresponding to α1A-AR have been identified in SAN cardiomyocytes, indicating the presence of α1A-AR at protein level. The expression of α1A-AR in SAN has been also confirmed at the mRNA level. The stimulation of α1-AR affects SAN functioning. Phenylephrine (PHE) utilized as α1A-AR agonist caused a decrease in SNRT/cSNRT, as well as an acceleration of SAN accommodation. These effects were rate dependent and were observed in a high frequency range of pacemaker tissue stimulation. PHE induces changes in the excitation pattern of the SAN. The effects of PHE on functional parameters and SAN excitation pattern are attenuated by Ca<sup>2+</sup>-dependent chloride channel blocker NPPB but remains unaffected by the protein kinase C inhibitor BIM. Our results suggest that cardiac α1-ARs are important for maintaining function of SAN pacemaker at high heart rates and that α1-AR signalling cascades in the SAN by targeting Ca<sup>2+</sup>-dependent chloride channels are involved in the α1-adrenergic modulation of the electrophysiological properties of the heart pacemaker.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S39 - S50"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
A. E. Khairullin, A. Y. Teplov, S. N. Grishin, A. U. Ziganshin
{"title":"ATP Causes Contraction of Denervated Skeletal Muscles","authors":"A. E. Khairullin, A. Y. Teplov, S. N. Grishin, A. U. Ziganshin","doi":"10.1134/S1990747823060065","DOIUrl":"10.1134/S1990747823060065","url":null,"abstract":"<p>The ability of humoral agonists (and their persistent analogues) to induce contractions of denervated <i>m. soleus</i> and <i>m. extensor</i> <i>digitorum longus</i> of mice was investigated. Earlier, we found a change in the effectiveness of the ATP modulating effect under some non-physiological factors in the neuromuscular synapses of rodents. The aim of this study was to evaluate the effect of ATP on the contractility of isolated skeletal muscles of a mouse after traumatic denervation. It has been shown that 28-day denervation led to an increase in the strength of contractions of <i>m. soleus</i> and <i>m. extensor digitorum longus</i> caused by an acetylcholine analog. ATP application induced a contraction of denervated muscles, but not of intact ones. In the presence of a non-selective P2 receptor antagonist suramin, the effect of ATP ceased. We suggest that activation of postsynaptic P2X receptors of denervated muscles could cause their contraction. Apparently, this effect was caused by an increase in the expression of postsynaptic receptors in response to a violation of neurotrophic control and the conductive ability of the nerve fiber.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S73 - S77"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499218","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Modulation of Adhesion and Migration of NIH/3T3 Cells in Collagen Materials by Taxifolin Derivatives","authors":"Yu. V. Shatalin, M. I. Kobyakova, V. S. Shubina","doi":"10.1134/S1990747823070048","DOIUrl":"10.1134/S1990747823070048","url":null,"abstract":"<p>One of the urgent tasks of tissue engineering is the development of stable non-toxic materials that support cell migration during tissue regeneration. This study was aimed at obtaining new gel materials based on collagen and derivatives of taxifolin, taxifolin pentaglutarate and a conjugate of taxifolin with glyoxylic acid and investigating their properties. It was shown that an increase in the proportion of polyphenols in the gel led to a decrease in the rate of degradation of the material. The obtained materials did not negatively affect the viability of NIH/3T3 mouse fibroblasts. The cells were attached to the surface of the materials and spread out on the surface of the material containing taxifolin pentaglutarate. It was also found that fibroblasts migrated through the obtained materials. An increase in the proportion of the conjugate of taxifolin with glyoxylic acid in the material led to inhibition of migration through the material, whereas an increase in the proportion of taxifolin pentaglutarate in the material, on the contrary, led to a significant increase in cell migration through the material. The results obtained indicated the possibility of modulating cell adhesion and migration in biomaterials by including various taxifolin derivatives in their composition. Thus, materials obtained on the basis of collagen and taxifolin derivatives may be of interest for regenerative medicine.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S85 - S93"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140888253","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
P. P. Avdonin, Yu. V. Markitantova, E. Yu. Rybakova, N. V. Goncharov, P. V. Avdonin
{"title":"Activation of Complement Factor C3/C3b Deposition on the of Endothelial Cell Surface by Histamine As one of the Causes of Endothelium Damage in COVID-19","authors":"P. P. Avdonin, Yu. V. Markitantova, E. Yu. Rybakova, N. V. Goncharov, P. V. Avdonin","doi":"10.1134/S1990747823070012","DOIUrl":"10.1134/S1990747823070012","url":null,"abstract":"<p>Endothelial damage as a result of complement system activation is one of the causes of thrombotic complications in COVID-19. Factor C3 plays a key role in this process. The attachment of its proteolysis product C3b to the membrane initiates the beginning of the formation of membrane attack complex C5b-9, which forms a pore in the plasma membrane and cell death. In the present study, we investigated how histamine, secreted in the body at sites of inflammation by leukocytes and mast cells, might affect the binding of C3b to endothelial cells (ECs). FITS-conjugated antibodies against the C3c fragment were used to visualize it. These antibodies bind to intact C3 and to C3b but not to C3a. We have shown that incubation of human blood plasma with cultured ECs from human umbilical vein results in accumulation of C3/C3b as rounded local and diffuse foci on the surface of the cell monolayer. Pre-activation of ECs by histamine increases the number of C3/C3b attachment sites. These data suggest that histamine can enhance endothelial layer damage during hyperactivation of the complement system in COVID-19 and endotheliopathies caused by other diseases.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S51 - S58"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499066","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
D. K. Chistyulin, E. A. Zelepuga, V. L. Novikov, N. N. Balaneva, V. P. Glazunov, E. A. Chingizova, V. A. Khomenko, O. D. Novikova
{"title":"Molecular Model of Norfloxacin Translocation through Yersinia pseudotuberculosis Porin OmpF Channel: Electrophysiological and Molecular Modeling Study","authors":"D. K. Chistyulin, E. A. Zelepuga, V. L. Novikov, N. N. Balaneva, V. P. Glazunov, E. A. Chingizova, V. A. Khomenko, O. D. Novikova","doi":"10.1134/S1990747823070024","DOIUrl":"10.1134/S1990747823070024","url":null,"abstract":"<p>The interaction of the <i>Yersinia pseudotuberculosis</i> porin OmpF (YpOmpF) with the fluoroquinolone antibiotic norfloxacin (Nf) and its derivatives (mono- and dihydrochloride) was studied using the bilayer lipid membrane (BLM) method, molecular modeling, and antibacterial activity testing. An asymmetric behavior of the Nf charged molecules was found: NfH<sup>+1</sup> and Nf2H<sup>+2</sup> moved through the YpOmpF channel, depending on the membrane voltage and on the side where the antibiotic was added. The electrophysiological data were confirmed by computational modeling. For charged forms of the antibiotic, the presence of two peripheral high-affinity binding sites (NBS1 and NBS2), as well as an asymmetric current blocking site (NBS3) near the channel constriction zone were detected. The NBS1 site located near the channel mouth has almost the same affinity for both charged forms of Nf, while the localization of the more energetically favorable NBS2 site for the two salt forms of the antibiotic differs significantly. Nf has only one binding site near the constriction zone, which is a cluster of sites with a lower overall affinity compared to the peripheral binding sites mentioned above. Slight differences were found in the antibacterial activity of the three forms of Nf, which is likely due to their different charge states and, accordingly, different permeability and/or ability to bind within the YpOmpF channel.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S20 - S38"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499260","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Sensors of Intracellular Nucleic Acids Activating STING-Dependent Production of Interferons in Immunocompetent Cells","authors":"L. V. Smolyaninova, O. N. Solopova","doi":"10.1134/S199074782307005X","DOIUrl":"10.1134/S199074782307005X","url":null,"abstract":"<p>Currently, foreign DNA or RNA sensor proteins, which play an important role in innate immunity, are of great interest as a new avenue for cancer immunotherapy. This review considers the functioning of cytoplasmic nucleic acid sensors such as cGAS, STING, IFI16, AIM2, DAI, DDX41, DNA-PK, MRE-11, and TREX1, involved in activating the production of various cytokines.</p>","PeriodicalId":484,"journal":{"name":"Biochemistry (Moscow), Supplement Series A: Membrane and Cell Biology","volume":"17 1 supplement","pages":"S1 - S19"},"PeriodicalIF":1.1,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139499313","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}