Geus Bulletin最新文献

筛选
英文 中文
Inventory of onshore petroleum seeps and stains in Greenland: a web-based GIS model 格陵兰陆上石油渗漏和污渍清单:基于网络的GIS模型
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2021-09-23 DOI: 10.34194/geusb.v47.6519
F. Christiansen, J. Bojesen‐Koefoed
{"title":"Inventory of onshore petroleum seeps and stains in Greenland: a web-based GIS model","authors":"F. Christiansen, J. Bojesen‐Koefoed","doi":"10.34194/geusb.v47.6519","DOIUrl":"https://doi.org/10.34194/geusb.v47.6519","url":null,"abstract":"A new inventory on onshore petroleum seeps and stains in Greenland has been released by the Geological Survey of Denmark and Greenland as a web-based GIS model on the Greenland Mineral Resources Portal: Petroleum Seeps and Stains in Greenland. Knowledge on oil and gas seeps, oil stains and solid bitumen occurrences provides key information on mineral and petroleum systems, especially in frontier basins. As the understanding of recent and previous migrations of fluids and gases is important for both mineral and petroleum explorations in Greenland, this new inventory has been developed to facilitate exploration and new activities. The classification includes the following types of occurrences: (1) oil seeps, (2) gas seeps, (3) mud diapirs, pingos and gas-rich springs, (4) oil stains in volcanics, carbonates and sandstones, (5) solid macroscopic bitumen and (6) fluid inclusions and other evidence of micro-seepage. The inventory comprises detailed information on localities, coordinates and sample numbers. It also includes descriptions of features and geology, references to data, reports and publications. All information is summarised in either a mineral or petroleum systems context. Petroleum seeps and stains have been reported from most Palaeozoic, Mesozoic and Cenozoic basins in Greenland where they add important information on petroleum systems, especially distribution and facies variation of source rocks, petroleum generation and later migration, accumulation, remigration, uplift and degradation. The inventory is designed to be updated with additional localities and descriptions and new organic geochemical data. This paper provides a general overview of classification, nomenclature, organisation and content of the inventory. We introduce the regional distribution of petroleum seeps and stains in Greenland and general interpretations in the context of mineral and petroleum systems.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45918770","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
The Permian to Cretaceous succession at Permpasset, Wollaston Forland: the northernmost Permian and Triassic in North–East Greenland Wollaston Forland Permpasset的二叠纪到白垩纪演替:格陵兰岛东北部最北端的二叠纪和三叠纪
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2021-07-23 DOI: 10.34194/GEUSB.V47.6523
S. Andrews, H. Nøhr-Hansen, P. Guarnieri, K. Dybkjær, S. Lindström, P. Alsen
{"title":"The Permian to Cretaceous succession at Permpasset, Wollaston Forland: the northernmost Permian and Triassic in North–East Greenland","authors":"S. Andrews, H. Nøhr-Hansen, P. Guarnieri, K. Dybkjær, S. Lindström, P. Alsen","doi":"10.34194/GEUSB.V47.6523","DOIUrl":"https://doi.org/10.34194/GEUSB.V47.6523","url":null,"abstract":"Permian to Triassic outcrops in East Greenland diminish significantly northwards. Understanding the northward extent, and nature, of the Permian and Triassic successions has implications for regional palaeogeographic reconstructions and exploration in adjacent offshore basins. Examining the structural relationships between the basement, Permian, Triassic, Jurassic and Cretaceous successions can further our understanding of the tectonic evolution of the region. Here, we describe a hitherto overlooked section through the Permian to Cretaceous from central Wollaston Forland and consider its structural context. The western side of Permpasset forms the upthrown eroded crest of a horst block, which provides exposure of the earliest stratigraphic intervals in the region. The fractured Caledonian basement is overlain by evaporitic marine limestone facies of the Karstryggen Formation, which are succeeded by shallow marine sandstones assigned to the Schuchert Dal Formation, both Upper Permian. The overlying unit records a period of fluvial deposition and is not possible to date. However, an Early to Middle Triassic age (Pingo Dal Group) seems most likely, given regional eustatic considerations. This is, therefore, the most northerly record of Triassic strata in North–East Greenland. West of the horst structure, fine-grained sandstones and bioturbated siltstones of the Jurassic (Oxfordian) Jakobsstigen Formation are recorded. These were downfaulted prior to a prolonged hiatus after which both the Triassic and Jurassic strata were draped by Cretaceous shales of the Fosdalen Formation. The Cretaceous succession is overlain by a thick basalt pile of Eocene age, heralding the opening of the North-East Atlantic. Glendonites overlie Oxfordian siltstones at the base of the middle Albian Fosdalen Formation. These were likely winnowed from slightly older Cretaceous strata and overlie the hiatus surface between the Jurassic and Cretaceous. This is the first record of glendonites from the Cretaceous of East Greenland and they are interpreted to record the Circum–Arctic late Aptian – early Albian cooling event.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44423514","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Fingerprinting sources of salinity in a coastal chalk aquifer in Denmark using trace elements 利用微量元素对丹麦沿海白垩含水层盐度来源进行指纹识别
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2021-07-23 DOI: 10.34194/GEUSB.V47.5336
C. Knudsen, K. Hinsby, R. Jakobsen, Lars Juul Kjærgård, P. Rasmussen
{"title":"Fingerprinting sources of salinity in a coastal chalk aquifer in Denmark using trace elements","authors":"C. Knudsen, K. Hinsby, R. Jakobsen, Lars Juul Kjærgård, P. Rasmussen","doi":"10.34194/GEUSB.V47.5336","DOIUrl":"https://doi.org/10.34194/GEUSB.V47.5336","url":null,"abstract":"Salinity levels above the drinking water standard (>250 mg/l Cl–) are observed at shallow depth in a Maastrichtian chalk aquifer on the island of Falster, south-eastern Denmark. To understand the source of the salt, 63 samples from 12 individual, 1 m, screened intervals between 14 and 26 m b.s. were collected from 1 May to 4 June 2018. The samples were collected during a tracer test to estimate the dual porosity properties of the chalk and were analysed for a wide range of elements. Furthermore, samples from the Baltic Sea and from deeper saline aquifers in the area (40 and 85 m b.s.) were analysed for comparison. The geochemical data were analysed using an unsupervised machine-learning algorithm, self-organising maps, to fingerprint water sources. The water composition in the screened intervals at various stratigraphic levels has specific geochemical fingerprints that are maintained for the first days of pumping and are distinct amongst the different levels. This suggests an evolution in water composition because of reaction with the chalk. Water composition is distinct from both seawater from the nearby Baltic Sea and salty water from deeper levels of the reservoir. Thus, neither up-coning of salty water nor intrusion of seawater caused the elevated salinity levels in the area. The slightly saline composition of groundwater in the shallow aquifer (14–26 m b.s.) is more likely because of incomplete refreshing of the salty connate water in the chalk during the Pleistocene and Holocene. Furthermore, the geochemical fingerprint of salty water from the deeper aquifer at 40 m was similar to water from the Baltic Sea, suggesting a Baltic Sea source for salt in the aquifer at 40 m b.s., c. 100 m from the coast. Statistical analysis based on self-organising maps is an effective tool for interpreting a large number of variables to understand the compositional variation in an aquifer and a useful alternative to linear dimensionality-reduction methods such as principal component analysis. The approach using the multi-element analysis combined with the analysis of self-organising maps may be useful in future studies of groundwater quality.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49387953","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 2
Jurassic stratigraphy of East Greenland 东格陵兰岛侏罗纪地层
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2021-07-09 DOI: 10.34194/GEUSB.V46.6521
F. Surlyk, P. Alsen, M. Bjerager, G. Dam, M. Engkilde, Carina F. Hansen, M. Larsen, N. Noe‐nygaard, S. Piasecki, J. Therkelsen, H. Vosgerau
{"title":"Jurassic stratigraphy of East Greenland","authors":"F. Surlyk, P. Alsen, M. Bjerager, G. Dam, M. Engkilde, Carina F. Hansen, M. Larsen, N. Noe‐nygaard, S. Piasecki, J. Therkelsen, H. Vosgerau","doi":"10.34194/GEUSB.V46.6521","DOIUrl":"https://doi.org/10.34194/GEUSB.V46.6521","url":null,"abstract":"The East Greenland Rift Basin comprises a series of Jurassic subbasins with different crustal configurations, and somewhat different tectonic histories and styles. The roughly N–S elongated basin is exposed in central and northern East Greenland over a length of more than 600 km and a width of up to 250 km. The southernmost exposures are found in the largest subbasin in Jameson Land, while the northernmost exposures are on Store Koldewey and in Germania Land. The focus of the present revision is on the Jurassic, but the uppermost Triassic and lowermost Cretaceous successions are included as they are genetically related to the Jurassic succession. The whole succession forms an overall transgressive–regressive megacycle with the highest sea level and maximum transgression in the Kimmeridgian.\u0000The latest Triassic – Early Jurassic was a time of tectonic quiescence in East Greenland. Lower Jurassic deposits are up to about 950 m thick and are restricted to Jameson Land and a small down-faulted outlier in southernmost Liverpool Land. The Lower Jurassic succession forms an overall stratigraphic layer-cake package that records a shift from Rhaetian–Sinemurian fluvio-lacustrine to Pliensbachian – early Bajocian mainly shallow marine sedimentation.\u0000Onset of rifting in the late Bajocian resulted in complete reorganisation of basin configuration and drainage patterns, and the depositional basin expanded far towards the north. Post-lower Bajocian early-rift deposits are up to about 500–600 m thick and are exposed in Jameson Land, Liverpool Land, Milne Land, Traill Ø, Geographical Society Ø, Hold with Hope, Clavering Ø, Wollaston Forland, Kuhn Ø, Th. Thomsen Land, Hochstetter Forland, Store Koldewey and Germania Land. Upper Jurassic rift-climax strata reach thicknesses of several kilometres and are exposed in the same areas with the exception of Liverpool Land and Germania Land.\u0000In the southern part of the basin, the upper Bajocian – Kimmeridgian succession consists of stepwise backstepping units starting with shallow marine sandstones and ending with relatively deep marine mudstones in some places with sandy gravity-flow deposits and injectites. In the Jameson Land and Milne Land Subbasins, the uppermost Jurassic – lowermost Cretaceous (Volgian–Ryazanian) succession consists of forestepping stacked shelf-margin sandstone bodies with associated slope and basinal mudstones and mass-flow sandstones. North of Jameson Land, block-faulting and tilting began in the late Bajocian and culminated in the middle Volgian with formation of strongly tilted fault blocks, and the succession records continued stepwise deepening. In the Wollaston Forland – Kuhn Ø area, the Volgian is represented by a thick wedge of deep-water conglomerates and pebbly sandstones passing basinwards into mudstones deposited in fault-attached slope aprons and coalescent submarine fans.\u0000The lithostratigraphic scheme established mainly in the 1970s and early 1980s is here revised on the basis of work","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-07-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47042691","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations 格陵兰岛裸冰反照率来自PROMICE自动气象站测量和Sentinel-3卫星观测
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2021-04-19 DOI: 10.34194/GEUSB.V47.5284
A. Wehrlé, J. Box, M. Niwano, A. Anesio, R. Fausto
{"title":"Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations","authors":"A. Wehrlé, J. Box, M. Niwano, A. Anesio, R. Fausto","doi":"10.34194/GEUSB.V47.5284","DOIUrl":"https://doi.org/10.34194/GEUSB.V47.5284","url":null,"abstract":"The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) provides surface meteorological and glaciological measurements from widespread on-ice automatic weather stations since mid-2007. In this study, we use 105 PROMICE ice-ablation time series to identify the timing of seasonal bare-ice onset preceded by snow cover conditions. From this collection, we find a bare-ice albedo at ice-ablation onset (here called bare-ice-onset albedo) of 0.565 ± 0.109 that has no apparent spatial dependence among 20 sites across Greenland. We then apply this snow-to-ice albedo transition value to measure the variations in daily Greenland bare-ice area in Sentinel-3 optical satellite imagery covering the extremely low and high respective melt years of 2018 and 2019. Daily Greenland bare-ice area peaked at 153 489 km² in 2019, 1.9 times larger than in 2018 (80 220 km²), equating to 9.0% (in 2019) and 4.7% (in 2018) of the ice sheet area.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":"47 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44989717","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Peneplains and tectonics in North-East Greenland after opening of the North-East Atlantic 东北大西洋打开后格陵兰东北部的准平原和构造
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2021-01-21 DOI: 10.34194/GEUSB.V45.5297
J. Bonow, P. Japsen
{"title":"Peneplains and tectonics in North-East Greenland after opening of the North-East Atlantic","authors":"J. Bonow, P. Japsen","doi":"10.34194/GEUSB.V45.5297","DOIUrl":"https://doi.org/10.34194/GEUSB.V45.5297","url":null,"abstract":"Elevated plateaus with deeply incised valleys characterise elevated, passive continental margins (EPCMs) in all climate zones. These features are, however, a topic of debate regarding when and how the large-scale landscapes formed. We have investigated and mapped the partly glaciated landscape of North-East Greenland (70–78°N). The area consists of crystalline basement and Palaeozoic–Mesozoic rift basins, capped by Palaeogene basalts that erupted during the northeast Atlantic break-up. Our stratigraphic landscape analysis reveals a typical EPCM dominated by two elevated erosion surfaces, extending 200 km east–west and 900 km north–south. The low-relief Upper Planation Surface (UPS; c. 2 km above sea level) cuts across basement and Palaeogene basalts, indicating that it was graded to base level defined by the Atlantic Ocean in post-basalt times and subsequently uplifted. The UPS formed prior to the deposition of mid-Miocene lavas that rest on it, south of the study area. In the interior basement terrains, the Lower Planation Surface (LPS) forms fluvial valley benches at c. 1 km above sea level, incised below the UPS. The LPS is thus younger than the UPS, which implies that it formed post mid-Miocene. Towards the coast, the valley benches merge to form a coherent surface that defines flat-topped mountains. This shows that the LPS was graded to near sea level and was subsequently uplifted. Hence, both the UPS and the LPS formed as peneplains – erosion surfaces graded to base level. The fluvial valley benches associated with the LPS further indicates that full glacial conditions were only established after the uplift of the LPS in the early Pliocene (c. 5 Ma). The uplift of the LPS led to re-exposure of a Mesozoic etch surface. We conclude that episodes of late Neogene tectonic uplift shaped the stepped landscape and elevated topography in North-East Greenland.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2021-01-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44284779","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 8
Preliminary landslide mapping in Denmark indicates an underestimated geohazard 丹麦的初步滑坡测绘表明,地质灾害被低估了
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2020-11-09 DOI: 10.34194/geusb.v44.5302
K. Svennevig, Gregor Luetzenburg, M. Keiding, Stig A. Schack Pedersen
{"title":"Preliminary landslide mapping in Denmark indicates an underestimated geohazard","authors":"K. Svennevig, Gregor Luetzenburg, M. Keiding, Stig A. Schack Pedersen","doi":"10.34194/geusb.v44.5302","DOIUrl":"https://doi.org/10.34194/geusb.v44.5302","url":null,"abstract":"The process of coastal erosion is well known to the public and decision-makers in Denmark; however, there is little awareness of the risks posed by larger landslides. Only a few scientific studies investigate landslides in Denmark, and as a result, the country is underrepresented in international landslide inventories. Here, we present a systematically produced preliminary landslide inventory based on digital elevation models and high-resolution orthophotos. So far, the preliminary inventory documents 3026 morphological expressions of landslides close to the coast and inland, showing that landslides are more widespread in Denmark than previously recognised. A number of these landslides are near buildings and infrastructure. This paper therefore highlights the potential for geohazardous landslides to occur in Denmark on a national scale and discusses some of the implications. Two of the major questions arising from this study are (1) how to approach potential geohazards in a country with no framework or precedence for landslide hazard and risk management and (2) how landslides and associated risk in Denmark will evolve under a changing climate.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":"1 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-11-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43860130","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 5
Geophysics for urban mining and the first surveys in Denmark: rationale, field activity and preliminary results 丹麦城市采矿的地球物理学和首次调查:原理、实地活动和初步结果
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2020-07-02 DOI: 10.34194/geusb.v44.5240
A. Sandrin, Aleksandar Maricak, B. Heincke, Rune J. Clausen, L. Nielsen, J. Keiding
{"title":"Geophysics for urban mining and the first surveys in Denmark: rationale, field activity and preliminary results","authors":"A. Sandrin, Aleksandar Maricak, B. Heincke, Rune J. Clausen, L. Nielsen, J. Keiding","doi":"10.34194/geusb.v44.5240","DOIUrl":"https://doi.org/10.34194/geusb.v44.5240","url":null,"abstract":"Geophysical methods have been widely used in recent decades to investigate and monitor landfill sites for environmental purposes. With the advent of the circular economy, waste contained in old landfills may be considered a resource that can be developed. Since the content of old landfills is largely unknown, the occurrence and quantity of valuable materials must be investigated before embarking on any development activity. Two landfills on Sjælland, Denmark (located at Hvalsø and Avedøre) were selected for a pilot study to characterise their content. At both locations, a set of geophysical surveys is underway. Here, we present the data obtained from magnetic and 2D seismic refraction surveys. Magnetic data show various anomalies that can be interpreted as caused by iron-rich waste. At both sites, the landfill material results in generally low P-wave velocity (<400 m/s), lower than those obtained for Quaternary sediments at Avedøre. The seismic velocities appear to increase in the presence of metals or by compaction with depth (>550 m/s). We propose that seismic refraction can thus define the bottom of the landfill and possibly its internal structure, especially when combined with other methods.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-07-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47431639","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 1
Thermo-tectonic development of the Wandel Sea Basin, North Greenland 北格陵兰万德尔海盆地热构造发育
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2020-03-23 DOI: 10.5194/egusphere-egu2020-17188
P. Japsen, P. Green, J. Chalmers
{"title":"Thermo-tectonic development of the Wandel Sea Basin, North Greenland","authors":"P. Japsen, P. Green, J. Chalmers","doi":"10.5194/egusphere-egu2020-17188","DOIUrl":"https://doi.org/10.5194/egusphere-egu2020-17188","url":null,"abstract":"The Carboniferous–Palaeogene Wandel Sea Basin of eastern North Greenland (north of 80°N, east of 40°W) is an important piece in the puzzle of Arctic geology. It is particularly important for understanding how the Paleocene–Eocene convergence between Greenland, the Canadian Arctic and Svalbard relates to the compressional tectonics in the High Arctic, collectively known as the Eurekan Orogeny. In this study, we present apatite fission-track analysis (AFTA) data and review published vitrinite reflectance data combined with observations from the stratigraphic record to place firmer constraints on the timing of key tectonic events. This research study reveals a long history of episodic burial and exhumation since the collapse of the Palaeozoic fold belts in Greenland. Our results define pre-Cenozoic exhumation episodes in early Permian, Late Triassic, Late Jurassic and mid-Cretaceous times, each involving the removal of kilometre-scale sedimentary covers. Mid-Paleocene exhumation defines the timing of compression along the major fault zones during the first stage of the Eurekan Orogeny, after the onset of sea-floor spreading west of Greenland. Regional exhumation that began at the end of the Eocene led to the removal of most of a kilometre-thick cover that had accumulated during Eocene subsidence and involved a major reverse movement along the Harder Fjord Fault Zone, northern Peary Land. These events took place after the end of sea-floor spreading west of Greenland, and thus, represent post-Eurekan tectonics. Mid–late Miocene exhumation is most likely a consequence of uplift and incision across most of the Wandel Sea Basin study area. The preserved sedimentary sequences of the Wandel Sea Basin represent remnants of thicker strata that likely extended substantially beyond the present-day outline of the basin. We find that the present-day outline of the basin with scattered sedimentary outliers is primarily the result of fault inversion during Eurekan compression followed by deposition and removal of a kilometre-thick overburden.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":"45 1","pages":""},"PeriodicalIF":1.7,"publicationDate":"2020-03-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45211715","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 4
Lithostratigraphy, geology and geochemistry of the volcanic rocks of the Maligât Formation and associated intrusions on Disko and Nuussuaq, Paleocene of West Greenland 西格陵兰古新世Disko和Nuussuaq Maligât组火山岩及相关侵入体的岩石地层学、地质学和地球化学
IF 1.7 4区 地球科学
Geus Bulletin Pub Date : 2018-09-30 DOI: 10.34194/geusb.v40.4326
A. Pedersen, Lotte Melchior Larsen, Gunver Krarup Pedersen
{"title":"Lithostratigraphy, geology and geochemistry of the volcanic rocks of the Maligât Formation and associated intrusions on Disko and Nuussuaq, Paleocene of West Greenland","authors":"A. Pedersen, Lotte Melchior Larsen, Gunver Krarup Pedersen","doi":"10.34194/geusb.v40.4326","DOIUrl":"https://doi.org/10.34194/geusb.v40.4326","url":null,"abstract":"The Paleocene volcanic rocks in the Nuussuaq Basin on Disko and Nuussuaq comprise the picritic Vaigat Formation (c. 62–61 Ma) and the overlying basaltic Maligât Formation (c. 60 Ma). The Maligât Formation is up to 2000 m thick on western Disko where the top of the formation is least eroded. The formation is divided into four members, the Rinks Dal, Nordfjord, Niaqussat and Sapernuvik members, which are formally defined here. On central and eastern Disko and Nuussuaq the Maligât Formation lavas are interbedded with fluvial and lacustrine sandstones and mudstones of the Atanikerluk Formation.The Rinks Dal Member is the lowest member and originally constituted around 61% by volume of the formation. It is divided into 12 informal units based on chemically recognisable oscillations in the fractionation state of the basalts. The oldest units are present on central and south Disko close to the Disko Gneiss Ridge. The younger lavas spread farther to the east, north and west, filled the Assoq Lake basin east of the ridge and gradually onlapped the shield of the earlier Vaigat Formation that rose to the north. Only the lavas of the upper Rinks Dal Member reached far into Nuussuaq. The lavas are generally not crustally contaminated and comprise evolved basalts with 4.4–9.2 wt% MgO and a few picrites. The most evolved basalts with 3.2–4.8 wt% TiO2 occur in the middle part of the member where they form the Akuarut unit. \u0000The Nordfjord Member originally constituted around 6% by volume of the formation. It is not subdivided because the lithological variability is local. The member is widespread but has its depocentre on north-western Disko where thicknesses reach 350 m and eruption sites, intermediate lavas and acid tuffs are present. Over most of the area the member consists of just a few lava flows with combined thicknesses of 30–100 m. The member has a very diverse lithology with rock types ranging from silicic basalt with 5.3–10.0 wt% MgO through magnesian basaltic andesite and andesite with 2.4–10.6 wt% MgO to dacite with 1.2–2.2 wt% MgO. Rhyolite with 0.2–1.2 wt% MgO and up to 77 wt% SiO2 occur in tuffs and conglomerate clasts. All rocks are crustally contaminated and some are native-iron-bearing. \u0000The Niaqussat Member originally constituted around 33% by volume of the formation. It is subdivided into three informal units. The member is widespread, but much of it has been removed by erosion. Lithologies in the lower unit range from silicic picrite with up to 15 wt% MgO to basalt with 6–12 wt% MgO and a few basaltic andesite flows. The middle and upper parts of the Niaqussat Member comprise more evolved basalts with respectively 6.1–7.2 wt% MgO and 4.9–6.4 wt% MgO. All rocks are crustally contaminated and a few lava flows are native-iron-bearing. \u0000The Sapernuvik Member comprises three uncontaminated basalt flows with 7.5–10.7 wt% MgO. It is only preserved in a small area on western Disko. \u0000Dyke systems with up to 80 km long dykes and subvolcanic intrusions","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":1.7,"publicationDate":"2018-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49285084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 14
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信