S. Andrews, H. Nøhr-Hansen, P. Guarnieri, K. Dybkjær, S. Lindström, P. Alsen
{"title":"Wollaston Forland Permpasset的二叠纪到白垩纪演替:格陵兰岛东北部最北端的二叠纪和三叠纪","authors":"S. Andrews, H. Nøhr-Hansen, P. Guarnieri, K. Dybkjær, S. Lindström, P. Alsen","doi":"10.34194/GEUSB.V47.6523","DOIUrl":null,"url":null,"abstract":"Permian to Triassic outcrops in East Greenland diminish significantly northwards. Understanding the northward extent, and nature, of the Permian and Triassic successions has implications for regional palaeogeographic reconstructions and exploration in adjacent offshore basins. Examining the structural relationships between the basement, Permian, Triassic, Jurassic and Cretaceous successions can further our understanding of the tectonic evolution of the region. Here, we describe a hitherto overlooked section through the Permian to Cretaceous from central Wollaston Forland and consider its structural context. The western side of Permpasset forms the upthrown eroded crest of a horst block, which provides exposure of the earliest stratigraphic intervals in the region. The fractured Caledonian basement is overlain by evaporitic marine limestone facies of the Karstryggen Formation, which are succeeded by shallow marine sandstones assigned to the Schuchert Dal Formation, both Upper Permian. The overlying unit records a period of fluvial deposition and is not possible to date. However, an Early to Middle Triassic age (Pingo Dal Group) seems most likely, given regional eustatic considerations. This is, therefore, the most northerly record of Triassic strata in North–East Greenland. West of the horst structure, fine-grained sandstones and bioturbated siltstones of the Jurassic (Oxfordian) Jakobsstigen Formation are recorded. These were downfaulted prior to a prolonged hiatus after which both the Triassic and Jurassic strata were draped by Cretaceous shales of the Fosdalen Formation. The Cretaceous succession is overlain by a thick basalt pile of Eocene age, heralding the opening of the North-East Atlantic. Glendonites overlie Oxfordian siltstones at the base of the middle Albian Fosdalen Formation. These were likely winnowed from slightly older Cretaceous strata and overlie the hiatus surface between the Jurassic and Cretaceous. This is the first record of glendonites from the Cretaceous of East Greenland and they are interpreted to record the Circum–Arctic late Aptian – early Albian cooling event.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":" ","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"The Permian to Cretaceous succession at Permpasset, Wollaston Forland: the northernmost Permian and Triassic in North–East Greenland\",\"authors\":\"S. Andrews, H. Nøhr-Hansen, P. Guarnieri, K. Dybkjær, S. Lindström, P. Alsen\",\"doi\":\"10.34194/GEUSB.V47.6523\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Permian to Triassic outcrops in East Greenland diminish significantly northwards. Understanding the northward extent, and nature, of the Permian and Triassic successions has implications for regional palaeogeographic reconstructions and exploration in adjacent offshore basins. Examining the structural relationships between the basement, Permian, Triassic, Jurassic and Cretaceous successions can further our understanding of the tectonic evolution of the region. Here, we describe a hitherto overlooked section through the Permian to Cretaceous from central Wollaston Forland and consider its structural context. The western side of Permpasset forms the upthrown eroded crest of a horst block, which provides exposure of the earliest stratigraphic intervals in the region. The fractured Caledonian basement is overlain by evaporitic marine limestone facies of the Karstryggen Formation, which are succeeded by shallow marine sandstones assigned to the Schuchert Dal Formation, both Upper Permian. The overlying unit records a period of fluvial deposition and is not possible to date. However, an Early to Middle Triassic age (Pingo Dal Group) seems most likely, given regional eustatic considerations. This is, therefore, the most northerly record of Triassic strata in North–East Greenland. West of the horst structure, fine-grained sandstones and bioturbated siltstones of the Jurassic (Oxfordian) Jakobsstigen Formation are recorded. These were downfaulted prior to a prolonged hiatus after which both the Triassic and Jurassic strata were draped by Cretaceous shales of the Fosdalen Formation. The Cretaceous succession is overlain by a thick basalt pile of Eocene age, heralding the opening of the North-East Atlantic. Glendonites overlie Oxfordian siltstones at the base of the middle Albian Fosdalen Formation. These were likely winnowed from slightly older Cretaceous strata and overlie the hiatus surface between the Jurassic and Cretaceous. This is the first record of glendonites from the Cretaceous of East Greenland and they are interpreted to record the Circum–Arctic late Aptian – early Albian cooling event.\",\"PeriodicalId\":48475,\"journal\":{\"name\":\"Geus Bulletin\",\"volume\":\" \",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geus Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.34194/GEUSB.V47.6523\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geus Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.34194/GEUSB.V47.6523","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
The Permian to Cretaceous succession at Permpasset, Wollaston Forland: the northernmost Permian and Triassic in North–East Greenland
Permian to Triassic outcrops in East Greenland diminish significantly northwards. Understanding the northward extent, and nature, of the Permian and Triassic successions has implications for regional palaeogeographic reconstructions and exploration in adjacent offshore basins. Examining the structural relationships between the basement, Permian, Triassic, Jurassic and Cretaceous successions can further our understanding of the tectonic evolution of the region. Here, we describe a hitherto overlooked section through the Permian to Cretaceous from central Wollaston Forland and consider its structural context. The western side of Permpasset forms the upthrown eroded crest of a horst block, which provides exposure of the earliest stratigraphic intervals in the region. The fractured Caledonian basement is overlain by evaporitic marine limestone facies of the Karstryggen Formation, which are succeeded by shallow marine sandstones assigned to the Schuchert Dal Formation, both Upper Permian. The overlying unit records a period of fluvial deposition and is not possible to date. However, an Early to Middle Triassic age (Pingo Dal Group) seems most likely, given regional eustatic considerations. This is, therefore, the most northerly record of Triassic strata in North–East Greenland. West of the horst structure, fine-grained sandstones and bioturbated siltstones of the Jurassic (Oxfordian) Jakobsstigen Formation are recorded. These were downfaulted prior to a prolonged hiatus after which both the Triassic and Jurassic strata were draped by Cretaceous shales of the Fosdalen Formation. The Cretaceous succession is overlain by a thick basalt pile of Eocene age, heralding the opening of the North-East Atlantic. Glendonites overlie Oxfordian siltstones at the base of the middle Albian Fosdalen Formation. These were likely winnowed from slightly older Cretaceous strata and overlie the hiatus surface between the Jurassic and Cretaceous. This is the first record of glendonites from the Cretaceous of East Greenland and they are interpreted to record the Circum–Arctic late Aptian – early Albian cooling event.