A. Wehrlé, J. Box, M. Niwano, A. Anesio, R. Fausto
{"title":"格陵兰岛裸冰反照率来自PROMICE自动气象站测量和Sentinel-3卫星观测","authors":"A. Wehrlé, J. Box, M. Niwano, A. Anesio, R. Fausto","doi":"10.34194/GEUSB.V47.5284","DOIUrl":null,"url":null,"abstract":"The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) provides surface meteorological and glaciological measurements from widespread on-ice automatic weather stations since mid-2007. In this study, we use 105 PROMICE ice-ablation time series to identify the timing of seasonal bare-ice onset preceded by snow cover conditions. From this collection, we find a bare-ice albedo at ice-ablation onset (here called bare-ice-onset albedo) of 0.565 ± 0.109 that has no apparent spatial dependence among 20 sites across Greenland. We then apply this snow-to-ice albedo transition value to measure the variations in daily Greenland bare-ice area in Sentinel-3 optical satellite imagery covering the extremely low and high respective melt years of 2018 and 2019. Daily Greenland bare-ice area peaked at 153 489 km² in 2019, 1.9 times larger than in 2018 (80 220 km²), equating to 9.0% (in 2019) and 4.7% (in 2018) of the ice sheet area.","PeriodicalId":48475,"journal":{"name":"Geus Bulletin","volume":"47 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2021-04-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations\",\"authors\":\"A. Wehrlé, J. Box, M. Niwano, A. Anesio, R. Fausto\",\"doi\":\"10.34194/GEUSB.V47.5284\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) provides surface meteorological and glaciological measurements from widespread on-ice automatic weather stations since mid-2007. In this study, we use 105 PROMICE ice-ablation time series to identify the timing of seasonal bare-ice onset preceded by snow cover conditions. From this collection, we find a bare-ice albedo at ice-ablation onset (here called bare-ice-onset albedo) of 0.565 ± 0.109 that has no apparent spatial dependence among 20 sites across Greenland. We then apply this snow-to-ice albedo transition value to measure the variations in daily Greenland bare-ice area in Sentinel-3 optical satellite imagery covering the extremely low and high respective melt years of 2018 and 2019. Daily Greenland bare-ice area peaked at 153 489 km² in 2019, 1.9 times larger than in 2018 (80 220 km²), equating to 9.0% (in 2019) and 4.7% (in 2018) of the ice sheet area.\",\"PeriodicalId\":48475,\"journal\":{\"name\":\"Geus Bulletin\",\"volume\":\"47 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2021-04-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Geus Bulletin\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.34194/GEUSB.V47.5284\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"GEOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Geus Bulletin","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.34194/GEUSB.V47.5284","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"GEOLOGY","Score":null,"Total":0}
Greenland bare-ice albedo from PROMICE automatic weather station measurements and Sentinel-3 satellite observations
The Programme for Monitoring of the Greenland Ice Sheet (PROMICE) provides surface meteorological and glaciological measurements from widespread on-ice automatic weather stations since mid-2007. In this study, we use 105 PROMICE ice-ablation time series to identify the timing of seasonal bare-ice onset preceded by snow cover conditions. From this collection, we find a bare-ice albedo at ice-ablation onset (here called bare-ice-onset albedo) of 0.565 ± 0.109 that has no apparent spatial dependence among 20 sites across Greenland. We then apply this snow-to-ice albedo transition value to measure the variations in daily Greenland bare-ice area in Sentinel-3 optical satellite imagery covering the extremely low and high respective melt years of 2018 and 2019. Daily Greenland bare-ice area peaked at 153 489 km² in 2019, 1.9 times larger than in 2018 (80 220 km²), equating to 9.0% (in 2019) and 4.7% (in 2018) of the ice sheet area.