Nadezhda V Shilova, Svetlana M Polyakova, Alexey Yu Nokel, Alexander D Lipatnikov, Elena A Gordeeva, Marina V Lavrenteva, Nicolai V Bovin
{"title":"(Strept)avidin Binds Glycoconjugates.","authors":"Nadezhda V Shilova, Svetlana M Polyakova, Alexey Yu Nokel, Alexander D Lipatnikov, Elena A Gordeeva, Marina V Lavrenteva, Nicolai V Bovin","doi":"10.1134/S0006297924110142","DOIUrl":"https://doi.org/10.1134/S0006297924110142","url":null,"abstract":"<p><p>Fluorescently labeled and conjugated (strept)avidins are widely used for imaging biotinylated molecules in immunological assays and histochemistry. We showed that besides biotin, these proteins bind glycans, including fragments of mammalian glycoproteins and glycolipids, in particular, ABO blood group antigens, oligolactosamines, and 6-<i>O</i>-sulfated oligosaccharides. This interaction is inhibited in a dose-dependent manner by micromolar concentrations of polymeric, but not monomeric, glycan conjugates (i.e., requires polyvalence). Taking into account the cluster organization of cell glycans (glycoproteins and glycolipids), the ability of (strept)avidins to bind glycans might be a source of errors in the analysis of carbohydrate-containing samples, which can be prevented by avoiding a large excess of (strept)avidin in analytical systems.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 11","pages":"2023-2027"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142793917","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Danil I Peregud, Nataliya I Shirobokova, Aleksei A Kvichansky, Mikhail Yu Stepanichev, Natalia V Gulyaeva
{"title":"Purmorphamine Alters Anxiety-Like Behavior and Expression of Hedgehog Cascade Components in Rat Brain after Alcohol Withdrawal.","authors":"Danil I Peregud, Nataliya I Shirobokova, Aleksei A Kvichansky, Mikhail Yu Stepanichev, Natalia V Gulyaeva","doi":"10.1134/S0006297924110087","DOIUrl":"https://doi.org/10.1134/S0006297924110087","url":null,"abstract":"<p><p>Disturbances in the Hedgehog (Hh) signaling play an important role in dysmorphogenesis of bone tissue and central nervous system during prenatal alcohol exposure, which underlies development of fetal alcohol syndrome. The involvement of Hh proteins in the mechanisms of alcohol intake in adults remains obscure. We investigated the role of the Hh cascade in voluntary ethanol drinking and development of anxiety-like behavior (ALB) during early abstinence and assessed changes in the expression of Hh pathway components in different brain regions of male Wistar rats in a model of voluntary alcohol drinking using the intermittent access to 20% ethanol in a two-bottle choice procedure. Purmorphamine (Hh cascade activator and Smoothened receptor agonist) was administered intraperitoneally at a dose of 5 mg/kg body weight prior to 16-20 sessions of alcohol access. Purmorphamine had no effect on the ethanol preference; however, rats exposed to ethanol and receiving purmorphamine demonstrated changes in the ALB during the early abstinence period. Alcohol drinking affected the content of the Sonic hedgehog (Shh) and Patched mRNAs only in the amygdala. In rats exposed to ethanol and receiving purmorphamine, the level of Shh mRNA in the amygdala correlated negatively with the time spent in the open arms of the elevated plus maze. Therefore, we demonstrated for the first time that alterations in the Hh cascade induced by administration of purmorphamine did not affect alcohol preference in voluntary alcohol drinking. It was suggested that Hh cascade is involved in the development of anxiety after alcohol withdrawal through specific changes in the Hh cascade components in the amygdala.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 11","pages":"1938-1949"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794284","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander A Dayal, Olga I Parfenteva, Wang Huiying, Anton S Shakhov, Irina B Alieva, Alexander A Minin
{"title":"Vimentin and Desmin Intermediate Filaments Maintain Mitochondrial Membrane Potential.","authors":"Alexander A Dayal, Olga I Parfenteva, Wang Huiying, Anton S Shakhov, Irina B Alieva, Alexander A Minin","doi":"10.1134/S0006297924110154","DOIUrl":"https://doi.org/10.1134/S0006297924110154","url":null,"abstract":"<p><p>Intermediate filaments (IFs) represented by a diverse range of proteins, are one of the three main cytoskeleton components in different types of animal cells. IFs provide mechanical strength to cells and help position the nucleus and organelles in the cell. Desmin is an IF protein typical of muscle cells, while vimentin, which has a similar structure, is expressed in many mesenchymal cells. Both proteins are synthesized during myogenesis and regeneration of damaged muscle tissue and form a mixed IF network. Both desmin and vimentin regulate mitochondrial activity, including mitochondrial localization and maintenance of mitochondrial membrane potential, in the corresponding cells, but the role of mixed IFs in the control of mitochondrial functions remains unclear. To investigate how a simultaneous presence of these proteins affects mitochondrial membrane potential, we used BHK21 cells expressing both vimentin and desmin IFs. Expression of vimentin or desmin individually or both proteins simultaneously was suppressed using gene knockout and/or RNA interference. It was found that disruption of biosynthesis of either vimentin or desmin did not affect the mitochondrial membrane potential, which remained unchanged compared to cells expressing both proteins. Simultaneous abolishment of both proteins resulted in a 20% reduction in the mitochondrial membrane potential, indicating that both vimentin and desmin play an equally important role in its maintenance.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 11","pages":"2028-2036"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794289","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina S Kuligina, Grigoriy A Yanus, Evgeny N Imyanitov
{"title":"Diversity of the Circulating Tumor Markers: Perspectives of a Multimodal Liquid Biopsy.","authors":"Ekaterina S Kuligina, Grigoriy A Yanus, Evgeny N Imyanitov","doi":"10.1134/S0006297924110129","DOIUrl":"10.1134/S0006297924110129","url":null,"abstract":"<p><p>Over the past decade, liquid biopsy (LB) has become a routine diagnostic test essential for the treatment of malignant tumors of various localizations. Its capabilities include early diagnosis, molecular genotyping, prognosis, prediction, and monitoring of tumor response. Typically, liquid biopsy involves the extraction of a single type of tumor-derived molecules or cellular elements from blood and subsequent molecular analysis. These elements may include circulating tumor DNA (ctDNA), circulating tumor cells (CTCs), circulating tumor RNA (ctRNA), or contents of extracellular vesicles (exosomes). Despite the technical sophistication of molecular analysis methods for circulating biomarkers, this diagnostic approach has limited relevance. In a significant proportion of cancer patients (ranging from 10 to 50%, depending on the tumor type), none of these analytes can be detected and analyzed, even in the presence of large, progressing neoplastic foci in the body. It seems reasonable to suggest that heterogeneous fractions of the circulating tumor-specific biomarkers complement each other, thus simultaneous analysis of several fractions will not only increase sensitivity of the method but also more accurately characterize and predict the clinical situation. This review examines the possibilities and advantages of applying a combined multiparametric approach to liquid biopsy, which involves testing multiple circulating analytes in a single blood sample.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 11","pages":"1985-1997"},"PeriodicalIF":2.3,"publicationDate":"2024-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142794169","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Stanislav I. Shram, Tatyana A. Shcherbakova, Tatyana V. Abramova, Maria S. Smirnovskaya, Anastasia I. Balandina, Andrey V. Kulikov, Vytas K. Švedas, Vladimir N. Silnikov, Nikolay F. Myasoedov, Dmitry K. Nilov
{"title":"A New Approach for Studying Poly(ADP-Ribose) Polymerase Inhibitors Using Permeabilized Adherent Cells","authors":"Stanislav I. Shram, Tatyana A. Shcherbakova, Tatyana V. Abramova, Maria S. Smirnovskaya, Anastasia I. Balandina, Andrey V. Kulikov, Vytas K. Švedas, Vladimir N. Silnikov, Nikolay F. Myasoedov, Dmitry K. Nilov","doi":"10.1134/S0006297924090086","DOIUrl":"10.1134/S0006297924090086","url":null,"abstract":"<p>Poly(ADP-ribose) polymerase (PARP) inhibitors have been proposed as pharmacological agents in the treatment of various diseases. Recently, factors and mechanisms responsible for regulating PARP catalytic activity have been identified, some of which can significantly influence the effectiveness of inhibitors of this enzyme. In this regard, it is important to develop new models and methods that would reflect the cellular context in which PARP functions. We proposed to use digitonin-permeabilized adherent cells to study poly(ADP-ribosyl)ation reaction (PARylation) in order to maintain the nuclear localization of PARP and to control the concentrations of its substrate (NAD<sup>+</sup>) and tested compounds in the cell. A specific feature of the approach is that before permeabilization, cellular PARP is converted to the DNA-bound state under conditions preventing premature initiation of the PARylation reaction. Experiments were carried out in rat H9c2 cardiomyoblasts. The activity of PARP in permeabilized cells was analyzed by measuring the immunofluorescence of the reaction product poly(ADP-ribose). The method was verified in the studies of PARP inhibition by the classic inhibitor 3-aminobenzamide and a number of new 7-methylguanine derivatives. One of them, 7,8-dimethylguanine, was found to be a stronger inhibitor compared to 7-methylguanine, due to a formation of additional hydrophobic contact with the protein. The proposed approach opens up new prospects for studying the mechanisms of PARP activity regulation in cells and can be used in high-throughput screening of PARP inhibitors.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1619 - 1630"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410811","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Artem V. Artiukhov, Olga N. Solovjeva, Natalia V. Balashova, Olga P. Sidorova, Anastasia V. Graf, Victoria I. Bunik
{"title":"Erratum to: Pharmacological Doses of Thiamine Benefit Patients with the Charcot–Marie–Tooth Neuropathy by Changing Thiamine Diphosphate Levels and Affecting Regulation of Thiamine-Dependent Enzymes","authors":"Artem V. Artiukhov, Olga N. Solovjeva, Natalia V. Balashova, Olga P. Sidorova, Anastasia V. Graf, Victoria I. Bunik","doi":"10.1134/S0006297924090116","DOIUrl":"10.1134/S0006297924090116","url":null,"abstract":"","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1657 - 1657"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410812","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatiana Yu. Fufina, Lyudmila G. Vasilieva, Irina B. Klenina, Ivan I. Proskuryakov
{"title":"Anomalous Temperature Dependence of the Triplet-Triplet Energy Transfer in Cereibacter sphaeroides I(L177)H Mutant Reaction Centers","authors":"Tatiana Yu. Fufina, Lyudmila G. Vasilieva, Irina B. Klenina, Ivan I. Proskuryakov","doi":"10.1134/S0006297924090049","DOIUrl":"10.1134/S0006297924090049","url":null,"abstract":"<p>In photosynthetic reaction centers, quenching of the primary donor triplet state by energy transfer to the carotenoid molecule provides efficient suppression of generation of singlet-excited oxygen, potent chemical oxidant. This process in the<i> Cereibacter sphaeroides</i> reaction centers is thermoactivated, and discontinues at temperatures below 40 K. In these reaction centers, substitution of amino acid residue isoleucine at the 177 position of the L-subunit with histidine results in the sharp decrease of activation energy, so that the carotenoid triplets are populated even at 10 K. Activation energy of the <i>T-T</i> energy transfer was estimated as 7.5 cm<sup>–1</sup>, which is more than 10-fold lower than activation energy in the wild type reaction centers. At certain temperatures, the energy transfer in the mutant is decelerated, which is related to the increase of effective distance of the triplet-triplet transfer. To the best of our knowledge, the described mutation presents the first reaction center modification leading to the significant decrease in activation energy of the <i>T-T</i> energy transfer to carotenoid molecule. The I(L177)H mutant reaction centers present a considerable interest for further studies of the triplet state quenching mechanisms, and of other photophysical and photochemical processes in the reaction centers of bacterial photosynthesis.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1573 - 1581"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411047","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tatyana A. Druzhkova, Marina Yu. Zhanina, Elena E. Vladimirova, Alla B. Guekht, Natalia V. Gulyaeva
{"title":"Proteomic Spectrum of Serum Exosomes in Ischemic Stroke Patients Is Associated with Cognitive Impairment in the Post-Stroke Period","authors":"Tatyana A. Druzhkova, Marina Yu. Zhanina, Elena E. Vladimirova, Alla B. Guekht, Natalia V. Gulyaeva","doi":"10.1134/S0006297924090062","DOIUrl":"10.1134/S0006297924090062","url":null,"abstract":"<p>Ischemic stroke (IS) and subsequent neuropsychiatric disorders are among the leading causes of disability worldwide. Several strategies have been previously proposed to utilize exosomes for assessing the risk of IS-related diseases. The aim of this work was to evaluate serum exosomal proteins in IS patients during the chronic post-stroke period and to search for their associations with the development of post-stroke mild cognitive impairment (MCI). Comparative quantitative proteomic analysis of serum exosomes of patients without post-stroke MCI (19 patients mean age 52.0 ± 8.1 years) and patients with post-stroke MCI (11 patients, mean age 64.8 ± 5.6 years) revealed significant differences in the levels of 62 proteins out of 186 identified. Increased levels of the proteins associated with immune system and decreased levels of the proteins involved in lipid metabolism were observed in the patients with MCI compared to the patients without MCI in the chronic post-stroke period. The obtained data suggest that the higher level of immune system activation in the patients during a relatively long period after IS may be one of the risk factors for the development of post-stroke cognitive disorders and suggest participation of exosomal transport in these processes.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1595 - 1609"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411054","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Ekaterina A. Guseva, Maria A. Emelianova, Vera N. Sidorova, Anatoly N. Tyulpakov, Olga A. Dontsova, Petr V. Sergiev
{"title":"Diversity of Molecular Functions of RNA-Binding Ubiquitin Ligases from the MKRN Protein Family","authors":"Ekaterina A. Guseva, Maria A. Emelianova, Vera N. Sidorova, Anatoly N. Tyulpakov, Olga A. Dontsova, Petr V. Sergiev","doi":"10.1134/S0006297924090037","DOIUrl":"10.1134/S0006297924090037","url":null,"abstract":"<p>Makorin RING finger protein family includes four members (MKRN1, MKRN2, MKRN3, and MKRN4) that belong to E3 ubiquitin ligases and play a key role in various biological processes, such as cell survival, cell differentiation, and innate and adaptive immunity. MKRN1 contributes to the tumor growth suppression, energy metabolism, anti-pathogen defense, and apoptosis and has a broad variety of targets, including hTERT, APC, FADD, p21, and various viral proteins. MKRN2 regulates cell proliferation, inflammatory response; its targets are p65, PKM2, STAT1, and other proteins. MKRN3 is a master regulator of puberty timing; it controls the levels of gonadotropin-releasing hormone in the arcuate nucleus neurons. MKRN4 is the least studied member of the MKRN protein family, however, it is known to contribute to the T cell activation by ubiquitination of serine/threonine kinase MAP4K3. Proteins of the MKRN family are associated with the development of numerous diseases, for example, systemic lupus erythematosus, central precocious puberty, Prader–Willi syndrome, degenerative lumbar spinal stenosis, inflammation, and cancer. In this review, we discuss the functional roles of all members of the MKRN protein family and their involvement in the development of diseases.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1558 - 1572"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142411053","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Irina V. Pavlova, Nadezhda D. Broshevitskaya, Anastasiya A. Potekhina, Anastasiya M. Shvadchenko
{"title":"The Effect of Chronic Overcrowding on Social Behavior and Expression of Neuroinflammation-Associated Genes in Rats","authors":"Irina V. Pavlova, Nadezhda D. Broshevitskaya, Anastasiya A. Potekhina, Anastasiya M. Shvadchenko","doi":"10.1134/S0006297924090050","DOIUrl":"10.1134/S0006297924090050","url":null,"abstract":"<p>The effect of chronic overcrowding on the social behavior of adult male Wistar rats was studied. From postnatal day 30 (P30) to P180, the rats lived under standard (STND) or overcrowded (CRWD) conditions. Starting from P100, rat behavior was studied in the social preference and tube dominance tests, and aggressive behavior was investigated in the resident-intruder test. After decapitation of rats on P180, amygdala, dorsal hippocampus, ventromedial hypothalamus, and medial prefrontal cortex were collected and analyzed for expression of the IL-1β, TNF, TGF-β1, and IL-6 mRNAs by quantitative polymerase chain reaction. Compared to the STND group, rats from the CRWD group demonstrated shorter interaction time with a social object in the social preference test. They also had more wins in the tube test and initiated more attacks in the resident-intruder test. Expression of the <i>IL1β</i> gene in the hippocampus and medial prefrontal cortex and of the <i>TGFβ1</i> gene in the hippocampus, amygdala, and prefrontal cortex was increased in the CRWD group. The stress induced by overcrowding increased social dominance and aggressiveness and decreased social motivation in rats. The changes in the social behavior of CRWD rats were accompanied by upregulation of expression of genes for the proinflammatory cytokine IL-1β and the anti-inflammatory cytokine TGF-β1 in a number of brain structures, which can be considered as manifestations of neuroinflammation and compensatory processes, respectively.</p>","PeriodicalId":483,"journal":{"name":"Biochemistry (Moscow)","volume":"89 9","pages":"1582 - 1594"},"PeriodicalIF":2.3,"publicationDate":"2024-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142410809","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}