Zhuchen Shao, Sourya Sengupta, Mark A Anastasio, Hua Li
{"title":"Semi-supervised semantic segmentation of cell nuclei with diffusion model and collaborative learning.","authors":"Zhuchen Shao, Sourya Sengupta, Mark A Anastasio, Hua Li","doi":"10.1117/1.JMI.12.6.061403","DOIUrl":"10.1117/1.JMI.12.6.061403","url":null,"abstract":"<p><strong>Purpose: </strong>Automated segmentation and classification of the cell nuclei in microscopic images is crucial for disease diagnosis and tissue microenvironment analysis. Given the difficulties in acquiring large labeled datasets for supervised learning, semi-supervised methods offer alternatives by utilizing unlabeled data alongside labeled data. Effective semi-supervised methods to address the challenges of extremely limited labeled data or diverse datasets with varying numbers and types of annotations remain under-explored.</p><p><strong>Approach: </strong>Unlike other semi-supervised learning methods that iteratively use labeled and unlabeled data for model training, we introduce a semi-supervised learning framework that combines a latent diffusion model (LDM) with a transformer-based decoder, allowing for independent usage of unlabeled data to optimize their contribution to model training. The model is trained based on a sequential training strategy. LDM is trained in an unsupervised manner on diverse datasets, independent of cell nuclei types, thereby expanding the training data and enhancing training performance. The pre-trained LDM serves as a powerful feature extractor to support the transformer-based decoder's supervised training on limited labeled data and improve final segmentation performance. In addition, the paper explores a collaborative learning strategy to enhance segmentation performance on out-of-distribution (OOD) data.</p><p><strong>Results: </strong>Extensive experiments conducted on four diverse datasets demonstrated that the proposed framework significantly outperformed other semi-supervised and supervised methods for both in-distribution and OOD cases. Through collaborative learning with supervised methods, diffusion model and transformer decoder-based segmentation (DTSeg) achieved consistent performance across varying cell types and different amounts of labeled data.</p><p><strong>Conclusions: </strong>The proposed DTSeg framework addresses cell nuclei segmentation under limited labeled data by integrating unsupervised LDM training on diverse unlabeled datasets. Collaborative learning demonstrated effectiveness in enhancing the generalization capability of DTSeg to achieve superior results across diverse datasets and cases. Furthermore, the method supports multi-channel inputs and demonstrates strong generalization to both in-distribution and OOD scenarios.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061403"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924957/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694064","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Grey Kuling, Jennifer D Brooks, Belinda Curpen, Ellen Warner, Anne L Martel
{"title":"Impact of menopause and age on breast density and background parenchymal enhancement in dynamic contrast-enhanced magnetic resonance imaging.","authors":"Grey Kuling, Jennifer D Brooks, Belinda Curpen, Ellen Warner, Anne L Martel","doi":"10.1117/1.JMI.12.S2.S22002","DOIUrl":"10.1117/1.JMI.12.S2.S22002","url":null,"abstract":"<p><strong>Purpose: </strong>Breast density (BD) and background parenchymal enhancement (BPE) are important imaging biomarkers for breast cancer (BC) risk. We aim to evaluate longitudinal changes in quantitative BD and BPE in high-risk women undergoing dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI), focusing on the effects of age and transition into menopause.</p><p><strong>Approach: </strong>A retrospective cohort study analyzed 834 high-risk women undergoing breast DCE-MRI for screening between 2005 and 2020. Quantitative BD and BPE were derived using deep-learning segmentation. Linear mixed-effects models assessed longitudinal changes and the effects of age, menopausal status, weeks since the last menstrual period (LMP-wks), body mass index (BMI), and hormone replacement therapy (HRT) on these imaging biomarkers.</p><p><strong>Results: </strong>BD decreased with age across all menopausal stages, whereas BPE declined with age in postmenopausal women but remained stable in premenopausal women. HRT elevated BPE in postmenopausal women. Perimenopausal women exhibited decreases in both BD and BPE during the menopausal transition, though cross-sectional age at menopause had no significant effect on either measure. Fibroglandular tissue was positively associated with BPE in perimenopausal women.</p><p><strong>Conclusions: </strong>We highlight the dynamic impact of menopause on BD and BPE and correlate well with the known relationship between risk and age at menopause. These findings advance the understanding of imaging biomarkers in high-risk populations and may contribute to the development of improved risk assessment leading to personalized chemoprevention and BC screening recommendations.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22002"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11894108/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143617600","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Breast tumor diagnosis via multimodal deep learning using ultrasound B-mode and Nakagami images.","authors":"Sabiq Muhtadi, Caterina M Gallippi","doi":"10.1117/1.JMI.12.S2.S22009","DOIUrl":"https://doi.org/10.1117/1.JMI.12.S2.S22009","url":null,"abstract":"<p><strong>Purpose: </strong>We propose and evaluate multimodal deep learning (DL) approaches that combine ultrasound (US) B-mode and Nakagami parametric images for breast tumor classification. It is hypothesized that integrating tissue brightness information from B-mode images with scattering properties from Nakagami images will enhance diagnostic performance compared with single-input approaches.</p><p><strong>Approach: </strong>An EfficientNetV2B0 network was used to develop multimodal DL frameworks that took as input (i) numerical two-dimensional (2D) maps or (ii) rendered red-green-blue (RGB) representations of both B-mode and Nakagami data. The diagnostic performance of these frameworks was compared with single-input counterparts using 831 US acquisitions from 264 patients. In addition, gradient-weighted class activation mapping was applied to evaluate diagnostically relevant information utilized by the different networks.</p><p><strong>Results: </strong>The multimodal architectures demonstrated significantly higher area under the receiver operating characteristic curve (AUC) values ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ) than their monomodal counterparts, achieving an average improvement of 10.75%. In addition, the multimodal networks incorporated, on average, 15.70% more diagnostically relevant tissue information. Among the multimodal models, those using RGB representations as input outperformed those that utilized 2D numerical data maps ( <math><mrow><mi>p</mi> <mo><</mo> <mn>0.05</mn></mrow> </math> ). The top-performing multimodal architecture achieved a mean AUC of 0.896 [95% confidence interval (CI): 0.813 to 0.959] when performance was assessed at the image level and 0.848 (95% CI: 0.755 to 0.903) when assessed at the lesion level.</p><p><strong>Conclusions: </strong>Incorporating B-mode and Nakagami information together in a multimodal DL framework improved classification outcomes and increased the amount of diagnostically relevant information accessed by networks, highlighting the potential for automating and standardizing US breast cancer diagnostics to enhance clinical outcomes.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22009"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12077846/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144081335","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Enhancing breast cancer detection on screening mammogram using self-supervised learning and a hybrid deep model of Swin Transformer and convolutional neural networks.","authors":"Han Chen, Anne L Martel","doi":"10.1117/1.JMI.12.S2.S22007","DOIUrl":"https://doi.org/10.1117/1.JMI.12.S2.S22007","url":null,"abstract":"<p><strong>Purpose: </strong>The scarcity of high-quality curated labeled medical training data remains one of the major limitations in applying artificial intelligence systems to breast cancer diagnosis. Deep models for mammogram analysis and mass (or micro-calcification) detection require training with a large volume of labeled images, which are often expensive and time-consuming to collect. To reduce this challenge, we proposed a method that leverages self-supervised learning (SSL) and a deep hybrid model, named HybMNet, which combines local self-attention and fine-grained feature extraction to enhance breast cancer detection on screening mammograms.</p><p><strong>Approach: </strong>Our method employs a two-stage learning process: (1) SSL pretraining: We utilize Efficient Self-Supervised Vision Transformers, an SSL technique, to pretrain a Swin Transformer (Swin-T) using a limited set of mammograms. The pretrained Swin-T then serves as the backbone for the downstream task. (2) Downstream training: The proposed HybMNet combines the Swin-T backbone with a convolutional neural network (CNN)-based network and a fusion strategy. The Swin-T employs local self-attention to identify informative patch regions from the high-resolution mammogram, whereas the CNN-based network extracts fine-grained local features from the selected patches. A fusion module then integrates global and local information from both networks to generate robust predictions. The HybMNet is trained end-to-end, with the loss function combining the outputs of the Swin-T and CNN modules to optimize feature extraction and classification performance.</p><p><strong>Results: </strong>The proposed method was evaluated for its ability to detect breast cancer by distinguishing between benign (normal) and malignant mammograms. Leveraging SSL pretraining and the HybMNet model, it achieved an area under the ROC curve of 0.864 (95% CI: 0.852, 0.875) on the Chinese Mammogram Database (CMMD) dataset and 0.889 (95% CI: 0.875, 0.903) on the INbreast dataset, highlighting its effectiveness.</p><p><strong>Conclusions: </strong>The quantitative results highlight the effectiveness of our proposed HybMNet and the SSL pretraining approach. In addition, visualizations of the selected region of interest patches show the model's potential for weakly supervised detection of microcalcifications, despite being trained using only image-level labels.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22007"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12076021/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144081336","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"HID-CON: weakly supervised intrahepatic cholangiocarcinoma subtype classification of whole slide images using contrastive hidden class detection.","authors":"Jing Wei Tan, Kyoungbun Lee, Won-Ki Jeong","doi":"10.1117/1.JMI.12.6.061402","DOIUrl":"10.1117/1.JMI.12.6.061402","url":null,"abstract":"<p><strong>Purpose: </strong>Biliary tract cancer, also known as intrahepatic cholangiocarcinoma (IHCC), is a rare disease that shows no clear symptoms during its early stage, but its prognosis depends highly on the cancer subtype. Hence, an accurate cancer subtype classification model is necessary to provide better treatment plans to patients and to reduce mortality. However, annotating histopathology images at the pixel or patch level is time-consuming and labor-intensive for giga-pixel whole slide images. To address this problem, we propose a weakly supervised method for classifying IHCC subtypes using only image-level labels.</p><p><strong>Approach: </strong>The core idea of the proposed method is to detect regions (i.e., subimages or patches) commonly included in all subtypes, which we name the \"hidden class,\" and to remove them via iterative application of contrastive loss and label smoothing. Doing so will enable us to obtain only patches that faithfully represent each subtype, which are then used to train the image-level classification model by multiple instance learning (MIL).</p><p><strong>Results: </strong>Our method outperforms the state-of-the-art weakly supervised learning methods ABMIL, TransMIL, and DTFD-MIL by <math><mrow><mo>∼</mo> <mn>17</mn> <mo>%</mo></mrow> </math> , 18%, and 8%, respectively, and achieves performance comparable to that of supervised methods.</p><p><strong>Conclusions: </strong>The introduction of a hidden class to represent patches commonly found across all subtypes enhances the accuracy of IHCC classification and addresses the weak labeling problem in histopathology images.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061402"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11898109/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143626473","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pontus Timberg, Gustav Hellgren, Magnus Dustler, Anders Tingberg
{"title":"Investigating the effect of adding comparisons with prior mammograms to standalone digital breast tomosynthesis screening.","authors":"Pontus Timberg, Gustav Hellgren, Magnus Dustler, Anders Tingberg","doi":"10.1117/1.JMI.12.S2.S22003","DOIUrl":"10.1117/1.JMI.12.S2.S22003","url":null,"abstract":"<p><strong>Purpose: </strong>The purpose is to retrospectively investigate how the addition of prior and concurrent mammograms affects wide-angle digital breast tomosynthesis (DBT) screening false-positive recall rates, malignancy scoring, and recall agreement.</p><p><strong>Approach: </strong>A total of 200 cases were selected from the Malmö Breast Tomosynthesis Screening Trial. They consist of 150 recalled cases [30 true positives (TPs), 120 false positives (FPs), and 50 healthy, non-recalled true-negative (TN) cases]. The positive cases were categorized based on being recalled by either DBT, digital mammography (DM), or both. Each case had DBT, synthetic mammography (SM), and DM (prior screening round) images. Five radiologists participated in a reading study where detection, risk of malignancy, and recall were assessed. They read each case twice, once using only DBT and once using DBT together with SM and DM priors.</p><p><strong>Results: </strong>The results showed a significant reduction in recall rates for all FP categories, as well as for the TN cases, when adding SM and prior DM to DBT. This resulted also in a significant increase in recall agreement for these categories, with more of the negative cases being recalled by few or no readers. These categories were overall rated as appearing more malignant in the DBT reading arm. For the TP categories, there was a significant decrease in recalls for DM-recalled cancers ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.047</mn></mrow> </math> ), but no significant difference for DBT-recalled cancers ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.063</mn></mrow> </math> ), or DBT/DM-recalled cancers ( <math><mrow><mi>p</mi> <mo>=</mo> <mn>0.208</mn></mrow> </math> ).</p><p><strong>Conclusions: </strong>Similar to the documented effect of priors in DM screening, we suggest that added two-dimensional priors improve the specificity of DBT screening but may reduce the sensitivity.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22003"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11931293/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143711591","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Kai Yang, Craig K Abbey, Bruno Barufaldi, Xinhua Li, Theodore A Marschall, Bob Liu
{"title":"Frequency-based texture analysis of non-Gaussian properties of digital breast tomosynthesis images and comparison across two vendors.","authors":"Kai Yang, Craig K Abbey, Bruno Barufaldi, Xinhua Li, Theodore A Marschall, Bob Liu","doi":"10.1117/1.JMI.12.S2.S22004","DOIUrl":"10.1117/1.JMI.12.S2.S22004","url":null,"abstract":"<p><strong>Purpose: </strong>We aim to analyze higher-order textural components of digital breast tomosynthesis (DBT) images to quantify differences in the appearance of breast parenchyma produced by different vendors.</p><p><strong>Approach: </strong>We included consecutive women who had normal screening DBT exams in January 2018 from a GE system and in adjacent years from Hologic systems. Laplacian fractional entropy (LFE), as a measure of non-Gaussian statistical properties of breast tissue texture, was calculated from for-presentation Craniocaudal (CC) view DBT slices and synthetic mammograms (SMs) through frequency-based filtering with Gabor filters, which were considered mathematical models for human visual response to image textures. The LFE values were compared within and across subjects and vendors along with secondary parameters (laterality, year-to-year, modality, and breast density) via two-way analysis of variance (ANOVA) tests using frequency as one of the two independent variables, and a <math><mrow><mi>P</mi></mrow> </math> -value <math><mrow><mo><</mo> <mn>0.05</mn></mrow> </math> was considered statistically significant.</p><p><strong>Results: </strong>A total of 8529 CC view DBT slices and SM images from 73 screening exams in 25 women were analyzed. Significant differences in LFE were observed for different frequencies ( <math><mrow><mi>P</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ) and across vendors (GE versus Hologic DBT: <math><mrow><mi>P</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> , GE versus Hologic SM: <math><mrow><mi>P</mi> <mo><</mo> <mn>0.001</mn></mrow> </math> ).</p><p><strong>Conclusion: </strong>Significant differences in perception of breast parenchyma textures among two DBT vendors were demonstrated via higher-order non-Gaussian statistical properties. This finding extends previously observed differences in anatomical noise power spectra in DBT images and provides quantitative evidence to support caution in across-vendor comparative reading and will be beneficial to facilitate future development of vendor-neutral artificial intelligence algorithms for breast cancer screening.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22004"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11925074/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"143694062","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Victor Dahlblom, Magnus Dustler, Sophia Zackrisson, Anders Tingberg
{"title":"Workload reduction of digital breast tomosynthesis screening using artificial intelligence and synthetic mammography: a simulation study.","authors":"Victor Dahlblom, Magnus Dustler, Sophia Zackrisson, Anders Tingberg","doi":"10.1117/1.JMI.12.S2.S22005","DOIUrl":"https://doi.org/10.1117/1.JMI.12.S2.S22005","url":null,"abstract":"<p><strong>Purpose: </strong>To achieve the high sensitivity of digital breast tomosynthesis (DBT), a time-consuming reading is necessary. However, synthetic mammography (SM) images, equivalent to digital mammography (DM), can be generated from DBT images. SM is faster to read and might be sufficient in many cases. We investigate using artificial intelligence (AI) to stratify examinations into reading of either SM or DBT to minimize workload and maximize accuracy.</p><p><strong>Approach: </strong>This is a retrospective study based on double-read paired DM and one-view DBT from the Malmö Breast Tomosynthesis Screening Trial. DBT examinations were analyzed with the cancer detection AI system ScreenPoint Transpara 1.7. For low-risk examinations, SM reading was simulated by assuming equality with DM reading. For high-risk examinations, the DBT reading results were used. Different combinations of single and double reading were studied.</p><p><strong>Results: </strong>By double-reading the DBT of 30% (4452/14,772) of the cases with the highest risk, and single-reading SM for the rest, 122 cancers would be detected with the same reading workload as DM double reading. That is 28% (27/95) more cancers would be detected than with DM double reading, and in total, 96% (122/127) of the cancers detectable with full DBT double reading would be found.</p><p><strong>Conclusions: </strong>In a DBT-based screening program, AI could be used to select high-risk cases where the reading of DBT is valuable, whereas SM is sufficient for low-risk cases. Substantially, more cancers could be detected compared with DM only, with only a limited increase in reading workload. Prospective studies are necessary.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22005"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12042222/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144003543","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Astrid Van Camp, Henry C Woodruff, Lesley Cockmartin, Marc Lobbes, Michael Majer, Corinne Balleyguier, Nicholas W Marshall, Hilde Bosmans, Philippe Lambin
{"title":"Impact of synthetic data on training a deep learning model for lesion detection and classification in contrast-enhanced mammography.","authors":"Astrid Van Camp, Henry C Woodruff, Lesley Cockmartin, Marc Lobbes, Michael Majer, Corinne Balleyguier, Nicholas W Marshall, Hilde Bosmans, Philippe Lambin","doi":"10.1117/1.JMI.12.S2.S22006","DOIUrl":"https://doi.org/10.1117/1.JMI.12.S2.S22006","url":null,"abstract":"<p><strong>Purpose: </strong>Predictive models for contrast-enhanced mammography often perform better at detecting and classifying enhancing masses than (non-enhancing) microcalcification clusters. We aim to investigate whether incorporating synthetic data with simulated microcalcification clusters during training can enhance model performance.</p><p><strong>Approach: </strong>Microcalcification clusters were simulated in low-energy images of lesion-free breasts from 782 patients, considering local texture features. Enhancement was simulated in the corresponding recombined images. A deep learning (DL) model for lesion detection and classification was trained with varying ratios of synthetic and real (850 patients) data. In addition, a handcrafted radiomics classifier was trained using delineations and class labels from real data, and predictions from both models were ensembled. Validation was performed on internal (212 patients) and external (279 patients) real datasets.</p><p><strong>Results: </strong>The DL model trained exclusively with synthetic data detected over 60% of malignant lesions. Adding synthetic data to smaller real training sets improved detection sensitivity for malignant lesions but decreased precision. Performance plateaued at a detection sensitivity of 0.80. The ensembled DL and radiomics models performed worse than the standalone DL model, decreasing the area under this receiver operating characteristic curve from 0.75 to 0.60 on the external validation set, likely due to falsely detected suspicious regions of interest.</p><p><strong>Conclusions: </strong>Synthetic data can enhance DL model performance, provided model setup and data distribution are optimized. The possibility to detect malignant lesions without real data present in the training set confirms the utility of synthetic data. It can serve as a helpful tool, especially when real data are scarce, and it is most effective when complementing real data.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22006"},"PeriodicalIF":1.9,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12036226/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144001778","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Michelle C Pryde, James Rioux, Adela Elena Cora, David Volders, Matthias H Schmidt, Mohammed Abdolell, Chris Bowen, Steven D Beyea
{"title":"Correlation of objective image quality metrics with radiologists' diagnostic confidence depends on the clinical task performed.","authors":"Michelle C Pryde, James Rioux, Adela Elena Cora, David Volders, Matthias H Schmidt, Mohammed Abdolell, Chris Bowen, Steven D Beyea","doi":"10.1117/1.JMI.12.5.051803","DOIUrl":"https://doi.org/10.1117/1.JMI.12.5.051803","url":null,"abstract":"<p><strong>Purpose: </strong>Objective image quality metrics (IQMs) are widely used as outcome measures to assess acquisition and reconstruction strategies for diagnostic images. For nonpathological magnetic resonance (MR) images, these IQMs correlate to varying degrees with expert radiologists' confidence scores of overall perceived diagnostic image quality. However, it is unclear whether IQMs also correlate with task-specific diagnostic image quality or expert radiologists' confidence in performing a specific diagnostic task, which calls into question their use as surrogates for radiologist opinion.</p><p><strong>Approach: </strong>0.5 T MR images from 16 stroke patients and two healthy volunteers were retrospectively undersampled ( <math><mrow><mi>R</mi> <mo>=</mo> <mn>1</mn></mrow> </math> to <math><mrow><mn>7</mn> <mo>×</mo></mrow> </math> ) and reconstructed via compressed sensing. Three neuroradiologists reported the presence/absence of acute ischemic stroke (AIS) and assigned a Fazekas score describing the extent of chronic ischemic lesion burden. Neuroradiologists ranked their confidence in performing each task using a 1 to 5 Likert scale. Confidence scores were correlated with noise quality measure, the visual information fidelity criterion, the feature similarity index, root mean square error, and structural similarity (SSIM) via nonlinear regression modeling.</p><p><strong>Results: </strong>Although acceleration alters image quality, neuroradiologists remain able to report pathology. All of the IQMs tested correlated to some degree with diagnostic confidence for assessing chronic ischemic lesion burden, but none correlated with diagnostic confidence in diagnosing the presence/absence of AIS due to consistent radiologist performance regardless of image degradation.</p><p><strong>Conclusions: </strong>Accelerated images were helpful for understanding the ability of IQMs to assess task-specific diagnostic image quality in the context of chronic ischemic lesion burden, although not in the case of AIS diagnosis. These findings suggest that commonly used IQMs, such as the SSIM index, do not necessarily indicate an image's utility when performing certain diagnostic tasks.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 5","pages":"051803"},"PeriodicalIF":1.9,"publicationDate":"2025-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11991859/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"144018546","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}