利用扩散模型和协作学习对细胞核进行半监督语义分割

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-03-20 DOI:10.1117/1.JMI.12.6.061403
Zhuchen Shao, Sourya Sengupta, Mark A Anastasio, Hua Li
{"title":"利用扩散模型和协作学习对细胞核进行半监督语义分割","authors":"Zhuchen Shao, Sourya Sengupta, Mark A Anastasio, Hua Li","doi":"10.1117/1.JMI.12.6.061403","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Automated segmentation and classification of the cell nuclei in microscopic images is crucial for disease diagnosis and tissue microenvironment analysis. Given the difficulties in acquiring large labeled datasets for supervised learning, semi-supervised methods offer alternatives by utilizing unlabeled data alongside labeled data. Effective semi-supervised methods to address the challenges of extremely limited labeled data or diverse datasets with varying numbers and types of annotations remain under-explored.</p><p><strong>Approach: </strong>Unlike other semi-supervised learning methods that iteratively use labeled and unlabeled data for model training, we introduce a semi-supervised learning framework that combines a latent diffusion model (LDM) with a transformer-based decoder, allowing for independent usage of unlabeled data to optimize their contribution to model training. The model is trained based on a sequential training strategy. LDM is trained in an unsupervised manner on diverse datasets, independent of cell nuclei types, thereby expanding the training data and enhancing training performance. The pre-trained LDM serves as a powerful feature extractor to support the transformer-based decoder's supervised training on limited labeled data and improve final segmentation performance. In addition, the paper explores a collaborative learning strategy to enhance segmentation performance on out-of-distribution (OOD) data.</p><p><strong>Results: </strong>Extensive experiments conducted on four diverse datasets demonstrated that the proposed framework significantly outperformed other semi-supervised and supervised methods for both in-distribution and OOD cases. Through collaborative learning with supervised methods, diffusion model and transformer decoder-based segmentation (DTSeg) achieved consistent performance across varying cell types and different amounts of labeled data.</p><p><strong>Conclusions: </strong>The proposed DTSeg framework addresses cell nuclei segmentation under limited labeled data by integrating unsupervised LDM training on diverse unlabeled datasets. Collaborative learning demonstrated effectiveness in enhancing the generalization capability of DTSeg to achieve superior results across diverse datasets and cases. Furthermore, the method supports multi-channel inputs and demonstrates strong generalization to both in-distribution and OOD scenarios.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 6","pages":"061403"},"PeriodicalIF":1.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924957/pdf/","citationCount":"0","resultStr":"{\"title\":\"Semi-supervised semantic segmentation of cell nuclei with diffusion model and collaborative learning.\",\"authors\":\"Zhuchen Shao, Sourya Sengupta, Mark A Anastasio, Hua Li\",\"doi\":\"10.1117/1.JMI.12.6.061403\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p><strong>Purpose: </strong>Automated segmentation and classification of the cell nuclei in microscopic images is crucial for disease diagnosis and tissue microenvironment analysis. Given the difficulties in acquiring large labeled datasets for supervised learning, semi-supervised methods offer alternatives by utilizing unlabeled data alongside labeled data. Effective semi-supervised methods to address the challenges of extremely limited labeled data or diverse datasets with varying numbers and types of annotations remain under-explored.</p><p><strong>Approach: </strong>Unlike other semi-supervised learning methods that iteratively use labeled and unlabeled data for model training, we introduce a semi-supervised learning framework that combines a latent diffusion model (LDM) with a transformer-based decoder, allowing for independent usage of unlabeled data to optimize their contribution to model training. The model is trained based on a sequential training strategy. LDM is trained in an unsupervised manner on diverse datasets, independent of cell nuclei types, thereby expanding the training data and enhancing training performance. The pre-trained LDM serves as a powerful feature extractor to support the transformer-based decoder's supervised training on limited labeled data and improve final segmentation performance. In addition, the paper explores a collaborative learning strategy to enhance segmentation performance on out-of-distribution (OOD) data.</p><p><strong>Results: </strong>Extensive experiments conducted on four diverse datasets demonstrated that the proposed framework significantly outperformed other semi-supervised and supervised methods for both in-distribution and OOD cases. Through collaborative learning with supervised methods, diffusion model and transformer decoder-based segmentation (DTSeg) achieved consistent performance across varying cell types and different amounts of labeled data.</p><p><strong>Conclusions: </strong>The proposed DTSeg framework addresses cell nuclei segmentation under limited labeled data by integrating unsupervised LDM training on diverse unlabeled datasets. Collaborative learning demonstrated effectiveness in enhancing the generalization capability of DTSeg to achieve superior results across diverse datasets and cases. Furthermore, the method supports multi-channel inputs and demonstrates strong generalization to both in-distribution and OOD scenarios.</p>\",\"PeriodicalId\":47707,\"journal\":{\"name\":\"Journal of Medical Imaging\",\"volume\":\"12 6\",\"pages\":\"061403\"},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2025-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11924957/pdf/\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Medical Imaging\",\"FirstCategoryId\":\"3\",\"ListUrlMain\":\"https://doi.org/10.1117/1.JMI.12.6.061403\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"2025/3/20 0:00:00\",\"PubModel\":\"Epub\",\"JCR\":\"Q3\",\"JCRName\":\"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.6.061403","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/3/20 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

摘要

目的:显微图像中细胞核的自动分割和分类对疾病诊断和组织微环境分析至关重要。鉴于获取大型标记数据集用于监督学习的困难,半监督方法通过利用未标记数据和标记数据提供了替代方案。有效的半监督方法来解决极其有限的标记数据或具有不同数量和类型注释的不同数据集的挑战仍然有待探索。方法:与其他迭代使用标记和未标记数据进行模型训练的半监督学习方法不同,我们引入了一种半监督学习框架,该框架将潜在扩散模型(LDM)与基于变压器的解码器相结合,允许独立使用未标记数据以优化其对模型训练的贡献。该模型基于顺序训练策略进行训练。LDM以无监督的方式在不同的数据集上进行训练,与细胞核类型无关,从而扩展了训练数据,提高了训练性能。预训练的LDM作为一个强大的特征提取器,支持基于变压器的解码器对有限标记数据的监督训练,提高最终的分割性能。此外,本文还探讨了一种协作学习策略来提高对离分布(OOD)数据的分割性能。结果:在四个不同的数据集上进行的大量实验表明,所提出的框架在分布和OOD情况下都明显优于其他半监督和监督方法。通过与监督方法的协作学习,扩散模型和基于转换器解码器的分割(DTSeg)在不同细胞类型和不同数量的标记数据中实现了一致的性能。结论:提出的DTSeg框架通过整合各种未标记数据集的无监督LDM训练,解决了有限标记数据下的细胞核分割问题。协作学习证明了在提高DTSeg泛化能力方面的有效性,从而在不同的数据集和案例中获得更好的结果。此外,该方法支持多通道输入,并显示出对分布和OOD场景的强泛化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Semi-supervised semantic segmentation of cell nuclei with diffusion model and collaborative learning.

Purpose: Automated segmentation and classification of the cell nuclei in microscopic images is crucial for disease diagnosis and tissue microenvironment analysis. Given the difficulties in acquiring large labeled datasets for supervised learning, semi-supervised methods offer alternatives by utilizing unlabeled data alongside labeled data. Effective semi-supervised methods to address the challenges of extremely limited labeled data or diverse datasets with varying numbers and types of annotations remain under-explored.

Approach: Unlike other semi-supervised learning methods that iteratively use labeled and unlabeled data for model training, we introduce a semi-supervised learning framework that combines a latent diffusion model (LDM) with a transformer-based decoder, allowing for independent usage of unlabeled data to optimize their contribution to model training. The model is trained based on a sequential training strategy. LDM is trained in an unsupervised manner on diverse datasets, independent of cell nuclei types, thereby expanding the training data and enhancing training performance. The pre-trained LDM serves as a powerful feature extractor to support the transformer-based decoder's supervised training on limited labeled data and improve final segmentation performance. In addition, the paper explores a collaborative learning strategy to enhance segmentation performance on out-of-distribution (OOD) data.

Results: Extensive experiments conducted on four diverse datasets demonstrated that the proposed framework significantly outperformed other semi-supervised and supervised methods for both in-distribution and OOD cases. Through collaborative learning with supervised methods, diffusion model and transformer decoder-based segmentation (DTSeg) achieved consistent performance across varying cell types and different amounts of labeled data.

Conclusions: The proposed DTSeg framework addresses cell nuclei segmentation under limited labeled data by integrating unsupervised LDM training on diverse unlabeled datasets. Collaborative learning demonstrated effectiveness in enhancing the generalization capability of DTSeg to achieve superior results across diverse datasets and cases. Furthermore, the method supports multi-channel inputs and demonstrates strong generalization to both in-distribution and OOD scenarios.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信