Asymmetric scatter kernel estimation neural network for digital breast tomosynthesis.

IF 1.9 Q3 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
Journal of Medical Imaging Pub Date : 2025-11-01 Epub Date: 2025-06-12 DOI:10.1117/1.JMI.12.S2.S22008
Subong Hyun, Seoyoung Lee, Ilwong Choi, Choul Woo Shin, Seungryong Cho
{"title":"Asymmetric scatter kernel estimation neural network for digital breast tomosynthesis.","authors":"Subong Hyun, Seoyoung Lee, Ilwong Choi, Choul Woo Shin, Seungryong Cho","doi":"10.1117/1.JMI.12.S2.S22008","DOIUrl":null,"url":null,"abstract":"<p><strong>Purpose: </strong>Various deep learning (DL) approaches have been developed for estimating scatter radiation in digital breast tomosynthesis (DBT). Existing DL methods generally employ an end-to-end training approach, overlooking the underlying physics of scatter formation. We propose a deep learning approach inspired by asymmetric scatter kernel superposition to estimate scatter in DBT.</p><p><strong>Approach: </strong>We use the network to generate the scatter amplitude distribution as well as the scatter kernel width and asymmetric factor map. To account for variations in local breast thickness and shape in DBT projection data, we integrated the Euclidean distance map and projection angle information into the network design for estimating the asymmetric factor.</p><p><strong>Results: </strong>Systematic experiments on numerical phantom data and physical experimental data demonstrated the outperformance of the proposed approach to UNet-based end-to-end scatter estimation and symmetric kernel-based approaches in terms of signal-to-noise ratio and structure similarity index measure of the resulting scatter corrected images.</p><p><strong>Conclusions: </strong>The proposed method is believed to have achieved significant advancement in scatter estimation of DBT projections, allowing a robust and reliable physics-informed scatter correction.</p>","PeriodicalId":47707,"journal":{"name":"Journal of Medical Imaging","volume":"12 Suppl 2","pages":"S22008"},"PeriodicalIF":1.9000,"publicationDate":"2025-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12162176/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Medical Imaging","FirstCategoryId":"3","ListUrlMain":"https://doi.org/10.1117/1.JMI.12.S2.S22008","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/6/12 0:00:00","PubModel":"Epub","JCR":"Q3","JCRName":"RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING","Score":null,"Total":0}
引用次数: 0

Abstract

Purpose: Various deep learning (DL) approaches have been developed for estimating scatter radiation in digital breast tomosynthesis (DBT). Existing DL methods generally employ an end-to-end training approach, overlooking the underlying physics of scatter formation. We propose a deep learning approach inspired by asymmetric scatter kernel superposition to estimate scatter in DBT.

Approach: We use the network to generate the scatter amplitude distribution as well as the scatter kernel width and asymmetric factor map. To account for variations in local breast thickness and shape in DBT projection data, we integrated the Euclidean distance map and projection angle information into the network design for estimating the asymmetric factor.

Results: Systematic experiments on numerical phantom data and physical experimental data demonstrated the outperformance of the proposed approach to UNet-based end-to-end scatter estimation and symmetric kernel-based approaches in terms of signal-to-noise ratio and structure similarity index measure of the resulting scatter corrected images.

Conclusions: The proposed method is believed to have achieved significant advancement in scatter estimation of DBT projections, allowing a robust and reliable physics-informed scatter correction.

数字乳房断层合成的非对称散射核估计神经网络。
目的:各种深度学习(DL)方法被开发用于估计数字乳房断层合成(DBT)中的散射辐射。现有的深度学习方法通常采用端到端训练方法,忽略了散射形成的底层物理。我们提出了一种受非对称散射核叠加启发的深度学习方法来估计DBT中的散射。方法:利用网络生成散点振幅分布、散点核宽度和不对称因子图。为了考虑DBT投影数据中局部乳房厚度和形状的变化,我们将欧几里得距离图和投影角度信息整合到网络设计中,以估计不对称因素。结果:在数值模拟数据和物理实验数据上进行的系统实验表明,本文提出的方法在散射校正图像的信噪比和结构相似指数度量方面优于基于unet的端到端散射估计方法和基于对称核的方法。结论:所提出的方法被认为在DBT投影的散点估计方面取得了重大进展,允许进行稳健可靠的物理信息散点校正。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Journal of Medical Imaging
Journal of Medical Imaging RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING-
CiteScore
4.10
自引率
4.20%
发文量
0
期刊介绍: JMI covers fundamental and translational research, as well as applications, focused on medical imaging, which continue to yield physical and biomedical advancements in the early detection, diagnostics, and therapy of disease as well as in the understanding of normal. The scope of JMI includes: Imaging physics, Tomographic reconstruction algorithms (such as those in CT and MRI), Image processing and deep learning, Computer-aided diagnosis and quantitative image analysis, Visualization and modeling, Picture archiving and communications systems (PACS), Image perception and observer performance, Technology assessment, Ultrasonic imaging, Image-guided procedures, Digital pathology, Biomedical applications of biomedical imaging. JMI allows for the peer-reviewed communication and archiving of scientific developments, translational and clinical applications, reviews, and recommendations for the field.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术官方微信