{"title":"In situ observation of catalyst nanoparticle sintering resistance on oxide supports via gas phase transmission electron microscopy","authors":"Wonjun Kim, Kangsik Kim, Jaejin Kim, Zonghoon Lee","doi":"10.1186/s42649-024-00100-4","DOIUrl":"10.1186/s42649-024-00100-4","url":null,"abstract":"<div><p>Oxide-supported metal catalysts are essential components in industrial processes for catalytic conversion. However, the performance of these catalysts is often compromised in high temperature reaction environments due to sintering effects. Currently, a number of studies are underway with the objective of improving the metal support interaction (MSI) effect in order to enhance sintering resistance by surface modification of the oxide support, including the formation of inhomogeneous defects on the oxide support, the addition of a rare earth element, the use of different facets, encapsulation, and other techniques. The recent developments in in situ gas phase transmission electron microscopy (TEM) have enabled direct observation of the sintering process of NPs in real time. This capability further allows to verify the efficacy of the methods used to tailor the support surface and contributes effectively to improving sintering resistance. Here, we review a few selected studies on how in situ gas phase TEM has been used to prevent the sintering of catalyst NPs on oxide supports.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-09-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-024-00100-4","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142236084","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research reviews on myosin head interactions with F-actin","authors":"Yoon Ho Park, Gang San Song, Hyun Suk Jung","doi":"10.1186/s42649-024-00099-8","DOIUrl":"10.1186/s42649-024-00099-8","url":null,"abstract":"<div><p>The sliding filament theory and the cross-bridge model have been fundamental in understanding muscle contraction. While the cross-bridge model explains the interaction between a single myosin head and actin filament, the native myosin molecule consists of two heads. This review explores the possibility and mechanism of two-headed binding in myosin II to the actin. Recent studies using electron tomography and resonance energy transfer have provided evidence in support of the occurrence of two-headed binding. The flexibility of the regulatory light chain (RLC) appears to play a significant role in enabling this binding mode. However, high-resolution structures of the RLCs in the two-headed bound state have not yet been reported. Resolving these structures, possibly through sub-tomogram averaging or single-particle analysis, would provide definitive proof of the conformational flexibility of RLCs and their role in facilitating two-headed binding. Further investigations are also required to address questions such as the predominance of two-headed versus single-headed binding and the influence of the state of each of the heads on the other. An understanding of the mechanism of two-headed binding is crucial for developing a comprehensive model of the cross-bridge cycle of the native myosin molecule.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-024-00099-8","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142078722","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Clearing techniques for deeper imaging of plants and plant–microbe interactions","authors":"Ki Woo Kim","doi":"10.1186/s42649-024-00098-9","DOIUrl":"10.1186/s42649-024-00098-9","url":null,"abstract":"<div><p>Plant cells are uniquely characterized by exhibiting cell walls, pigments, and phenolic compounds, which can impede microscopic observations by absorbing and scattering light. The concept of clearing was first proposed in the late nineteenth century to address this issue, aiming to render plant specimens transparent using chloral hydrate. Clearing techniques involve chemical procedures that render biological specimens transparent, enabling deep imaging without physical sectioning. Drawing inspiration from clearing techniques for animal specimens, various protocols have been adapted for plant research. These procedures include (i) hydrophobic methods (e.g., Visikol™), (ii) hydrophilic methods (Sca<i>l</i>eP and ClearSee), and (iii) hydrogel-based methods (PEA-CLARITY). Initially, clearing techniques for plants were mainly utilized for deep imaging of seeds and leaves of herbaceous plants such as <i>Arabidopsis thaliana</i> and rice. Utilizing cell wall-specific fluorescent dyes for plants and fungi, researchers have documented the post-penetration behavior of plant pathogenic fungi within hosts. State-of-the-art plant clearing techniques, coupled with microbe-specific labeling and high-throughput imaging methods, offer the potential to advance the <i>in planta</i> characterization of plant microbiomes.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-05-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-024-00098-9","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141178392","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Noise reduction of electron holography observations for a thin-foiled Nd-Fe-B specimen using the wavelet hidden Markov model","authors":"Sujin Lee, Yoshihiro Midoh, Yuto Tomita, Takehiro Tamaoka, Mitsunari Auchi, Taisuke Sasaki, Yasukazu Murakami","doi":"10.1186/s42649-024-00097-w","DOIUrl":"10.1186/s42649-024-00097-w","url":null,"abstract":"<div><p>In this study, we investigate the effectiveness of noise reduction in electron holography, based on the wavelet hidden Markov model (WHMM), which allows the reasonable separation of weak signals from noise. Electron holography observations from a Nd<sub>2</sub>Fe<sub>14</sub>B thin foil showed that the noise reduction method suppressed artificial phase discontinuities generated by phase retrieval. From the peak signal-to-noise ratio, it was seen that the impact of denoising was significant for observations with a narrow spacing of interference fringes, which is a key parameter for the spatial resolution of electron holography. These results provide essential information for improving the precision of electron holography studies.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-04-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-024-00097-w","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140559484","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Microstructure of the silk fibroin-based hydrogel scaffolds derived from the orb-web spider Trichonephila clavata","authors":"Yan Sun, Bon-Jin Ku, Myung-Jin Moon","doi":"10.1186/s42649-024-00096-x","DOIUrl":"10.1186/s42649-024-00096-x","url":null,"abstract":"<div><p>Due to the unique properties of the silk fibroin (SF) made from silkworm, SF-based hydrogels have recently received significant attention for various biomedical applications. However, research on the SF-based hydrogels isolated from spider silks has been rtricted due to the limited collection and preparation of naïve silk materials. Therefore, this study focused on the microstructural characteristics of hydrogel scaffolds derived from two types of woven silk glands: the major ampullate gland (MAG) and the tubuliform gland (TG), in the orb-web spider <i>Trichonephila clavate</i>. We compared these spider glands with those of the silk fibroin (SF) hydrogel scaffold extracted from the cocoon of the insect silkworm <i>Bombyx mori</i>. Our FESEM analysis revealed that the SF hydrogel has high porosity, translucency, and a loose upper structure, with attached SF fibers providing stability. The MAG hydrogel displayed even higher porosity, as well as elongated fibrous structures, and improved mechanical properties: while the TG hydrogel showed increased porosity, ridge-like or wall-like structures, and stable biocapacity formed by physical crosslinking. Due to their powerful and versatile microstructural characteristics, the MAG and TG hydrogels can become tailored substrates, very effective for tissue engineering and regenerative medicine applications.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-02-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-024-00096-x","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139711149","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Changes of synaptic vesicles in three-dimensional synapse models by treatment with umbelliferone in scopolamine-induced hippocampal injury model","authors":"Ga-Young Choi, Eunyoung Moon, Hyosung Choi, Hee-Seok Kweon","doi":"10.1186/s42649-024-00095-y","DOIUrl":"10.1186/s42649-024-00095-y","url":null,"abstract":"<div><p>The neuroprotective effects of umbelliferone (UMB) were visualized in three-dimensional (3D) images on vesicle density changes of organotypic hippocampal slice tissues (OHSCs) induced by scopolamine by high voltage electron microscopy. Observations revealed that the number of vesicles decreased in OHSCs induced by scopolamine, and UMB was found to inhibit scopolamine-induced reduction in vesicles, resulting in an increase in vesicle count. These 3D models provide valuable insight for understanding the increase of synapse vesicles in hippocampal tissues treated with UMB.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10803702/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139519470","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"A simple and rapid preparation of smooth muscle myosin 2 for the electron microscopic analysis","authors":"Anahita Vispi Bharda, Hyun Suk Jung","doi":"10.1186/s42649-023-00094-5","DOIUrl":"10.1186/s42649-023-00094-5","url":null,"abstract":"<div><p>There has been an increase in the demand for purified protein as a result of recent developments in the structural biology of myosin 2. Although promising, current practices in myosin purification are usually time-consuming and cumbersome. The reported increased actin to myosin ratio in smooth muscles adds to the complexity of the purification process. Present study outlines a streamlined approach to isolate smooth muscle myosin 2 molecules from actomyosin suspension of chicken gizzard tissues. The procedure entails treating actomyosin for a brief period with actin-binding peptide phalloidin, followed by co-sedimentation and short column size exclusion chromatography. Typical myosin molecule with heavy and light chains and approximately 95% purity was examined using gel electrophoresis. Negative staining electron microscopy and image processing showed intact 10S myosin 2 molecules, proving that phalloidin is effective at eliminating majority of actin in the form of F-actin without dramatic alteration in the structure of myosin. The entire purification discussed here can be completed in a few hours, and further analysis can be done the same day. Thus, by offering quick and fresh supplies of native myosin molecules suited for structural research, specially cryo-electron microscopy, this innovative approach can be adapted to get around the drawbacks of time-intensive myosin purifying processes.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"54 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2024-01-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://appmicro.springeropen.com/counter/pdf/10.1186/s42649-023-00094-5","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"139072988","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Histology and morphometry of the skin of purple spaghetti-eel Moringua raitaborua (Anguilliformes, Moringuidae)","authors":"Hyun-Tae Kim","doi":"10.1186/s42649-023-00093-6","DOIUrl":"10.1186/s42649-023-00093-6","url":null,"abstract":"<div><p>The purple spaghetti-eel <i>Moringua raitaborua</i> lives on the sandy or muddy bottoms of estuaries, which are subject to rapid and wide changes in salinity, pH, and osmoregulatory and hypoxic conditions due to the influx of organic materials from sources of freshwater. The species has adapted to hypoxic environments by developing a thicker epidermis with stratified polygonal cells, club cells, two types of mucous cells (goblet and, oval cells), stratified cuboidal cells and dermis with abundant blood capillaries. Among them, histological modification of thinner dorsal, lateral, and ventral body skin to include abundant capillaries and well-developed dermal vascularization may provide cutaneous respiration, permitting survival in brackish waters with low levels of oxygen and variable environmental parameters.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10615986/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"71410067","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Taekyung Kim, Yongsang Lee, Yongju Hong, Kwangyeol Lee, Hionsuck Baik
{"title":"Three-dimensional reconstruction of Y-IrNi rhombic dodecahedron nanoframe by STEM/EDS tomography","authors":"Taekyung Kim, Yongsang Lee, Yongju Hong, Kwangyeol Lee, Hionsuck Baik","doi":"10.1186/s42649-023-00092-7","DOIUrl":"10.1186/s42649-023-00092-7","url":null,"abstract":"<div><p>The structural analysis of nanocrystals via transmission electron microscopy (TEM) is a valuable technique for the material science field. Recently, two-dimensional images by scanning TEM (STEM) and energy-dispersive X-ray spectroscopy (EDS) have successfully extended to three-dimensional (3D) imaging by tomography. However, despite improving TEM instruments and measurement techniques, detector shadowing, the missing-wedge problem, X-ray absorption effects, etc., significant challenges still remain; therefore, the various required corrections should be considered and applied when performing quantitative tomography. Nonetheless, this 3D reconstruction technique can facilitate active site analysis and the development of nanocatalyst systems, such as water electrolysis and fuel cell. Herein, we present a 3D reconstruction technique to obtain tomograms of IrNi rhombic dodecahedral nanoframes (IrNi-RFs) from STEM and EDS images by applying simultaneous iterative reconstruction technique and total variation minimization algorithms. From characterizing the morphology and spatial chemical composition of the Ir and Ni atoms in the nanoframes, we were able to infer the origin of the physical and catalytic durability of IrNi-RFs. Also, by calculating the surface area and volume of the 3D reconstructed model, we were able to quantify the Ir-to-Ni composition ratio and compare it to the EDS measurement result.</p></div>","PeriodicalId":470,"journal":{"name":"Applied Microscopy","volume":"53 1","pages":""},"PeriodicalIF":0.0,"publicationDate":"2023-09-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10511395/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41093214","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}