Larisa R. Latypova, Irek I. Mukhamatdinov, Alexander A. Rodionov, Darya V. Shurtakova, Marat R. Gafurov
{"title":"Temperature Dependence of the Electron Spin–Lattice Relaxation Time of Vanadyl Porphyrins in Asphaltenes from the Ashalcha Oilfield","authors":"Larisa R. Latypova, Irek I. Mukhamatdinov, Alexander A. Rodionov, Darya V. Shurtakova, Marat R. Gafurov","doi":"10.1007/s00723-024-01700-9","DOIUrl":"10.1007/s00723-024-01700-9","url":null,"abstract":"<div><p>Oil asphaltenes are known as the <i>cholesterol of petroleum</i> because of their ability to precipitate, deposit, and interrupt the continuous production of oil from underground reservoirs. Studies of asphaltenes by various analytical techniques allow fundamental understanding of their structure for optimizing the processes of geologic exploration and enhanced oil recovery. The purpose of this work is to analyze the temperature dependences of the electron relaxation times of the intrinsic for oil asphaltenes paramagnetic vanadyl-porphyrin (VP) complexes. Asphaltenes from the viscous Ashalcha oil (2500 mPa·s) were investigated using pulsed electron paramagnetic resonance (EPR) techniques at X-band (9 GHz) in the temperature range <i>T</i> = 10–300 K. It is found that at <i>T</i> > 100 K electron spin–lattice (longitudinal) relaxation rate obeys the power law <i>T</i><sup><i>n</i></sup> with <i>n</i> ≈ 3.0 while at <i>T</i> < 100 K direct relaxation process is more effective. An attempt to describe the relaxation data in the frameworks of the solid-state Debye model and fractal model are done. These models have little applicability to the type of asphaltenes studied.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1221 - 1232"},"PeriodicalIF":1.1,"publicationDate":"2024-08-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141919878","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"EPR at 80: Carotenoid Radical Cation Detection","authors":"A. Ligia Focsan, Lowell D. Kispert","doi":"10.1007/s00723-024-01691-7","DOIUrl":"10.1007/s00723-024-01691-7","url":null,"abstract":"<div><p>Electron Paramagnetic Resonance (EPR) has proven to be a powerful research tool in the study of carotenoid radicals providing detailed information on their structure, stability, and biological functions. Previously published simultaneous electrochemical and EPR<b> (</b>SEEPR) and high-field/high-frequency (HFEPR) experiments in vitro performed by Kispert’s group and in collaboration with National High Magnetic Field Laboratory (NHMFL) for the HFEPR measurements, were extremely helpful in elucidating the structure of the carotenoid radical cation and obtaining EPR parameters for carotenoids that were further used in the literature for comparison with parameters obtained for in vivo experiments.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1031 - 1046"},"PeriodicalIF":1.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00723-024-01691-7.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141924117","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Alexander Fedotov, Vladimir Pugovkin, Denis Burov, Anna Hurshkainen, Carlos Cabal Mirabal
{"title":"A Proposal of Gradient Coil Configuration for Low-Field Magnetic Resonance Imaging","authors":"Alexander Fedotov, Vladimir Pugovkin, Denis Burov, Anna Hurshkainen, Carlos Cabal Mirabal","doi":"10.1007/s00723-024-01682-8","DOIUrl":"10.1007/s00723-024-01682-8","url":null,"abstract":"<div><p>The design of gradient coils for low-field permanent magnets faces several challenges. The spatial constraints and eddy currents, concomitant gradient mutual inductances, as well as patient heating are significant challenges to gradient coil design. This study introduces a coil configuration to address these challenges. Particularly, a gradient coil configuration has been developed and studied for portable low-field MRI for the human head. The system consist of the non-local coils for the <i>Y</i> axis gradient and the local cylindrical coils for the <i>X</i> and <i>Z</i> axis gradients. Configuration of the system increases free space within the magnet while enhancing gradient efficiency and linearity. The calculation results of the numerically simulated gradient configuration achieves competitive gradient efficiency and linearity, being able to reduce eddy currents, mutual inductance and heating effects relative to traditional coils. This alternative gradient coil design presents a promising solution for low-field magnetic resonance imaging.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 8","pages":"767 - 774"},"PeriodicalIF":1.1,"publicationDate":"2024-08-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141922178","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Pavel G. Baranov, Roman A. Babunts, Nikolai G. Romanov
{"title":"Magnetic Resonance of Excited States in Semiconductors and Related Nanostructures","authors":"Pavel G. Baranov, Roman A. Babunts, Nikolai G. Romanov","doi":"10.1007/s00723-024-01695-3","DOIUrl":"10.1007/s00723-024-01695-3","url":null,"abstract":"<div><p>Electron and nuclear spins in solids, coherently coupled to photons, provide promising resources for quantum information processing and sensing. Obtaining information about short-lived excited states is critical for realizing ultrafast all-optical spin control methods. After a brief review of early magnetic resonance studies of excited states, the following representative examples of the use of magnetic resonance spectroscopy to study excited states in wide-gap materials, semiconductors and nanostructures based on them will be considered: (1) optically detected magnetic resonance (ODMR), electron spin echo, electron-nuclear double resonance in the excited state on the example of self-trapped excitons in ionic-covalent silver halide crystals and nanocrystals, (2) ODMR and level anticrossing (LAC) spectroscopy of localized heavy-hole excitons in semiconductor quantum wells and superlattices, (3) LAC and ODMR in excited states of spin centers in diamond and silicon carbide, (4) the use of LAC and cross-relaxation for all-optical sensing with submicron spatial resolution.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1011 - 1030"},"PeriodicalIF":1.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
I. Yatsyk, D. V. Mamedov, A. V. Shestakov, I. I. Fazlizhanov, R. M. Eremina, S. I. Andronenko, A. V. Pyataev, S. Vadnala, S. Asthana, S. K. Misra
{"title":"EPR Studies of Rare-Earth Manganites La0.7−xEuxSr0.3MnO3 (x = 0.1–0.7)","authors":"I. Yatsyk, D. V. Mamedov, A. V. Shestakov, I. I. Fazlizhanov, R. M. Eremina, S. I. Andronenko, A. V. Pyataev, S. Vadnala, S. Asthana, S. K. Misra","doi":"10.1007/s00723-024-01694-4","DOIUrl":"10.1007/s00723-024-01694-4","url":null,"abstract":"<div><p>The Europium rare-earth manganites, La<sub>0.7−<i>x</i></sub>Eu<sub><i>x</i></sub>Sr<sub>0.3</sub>MnO<sub>3</sub> (<i>x</i> = 0.0–0.7), were investigated by the technique of X-band electron paramagnetic resonance (EPR) in the temperature range from 30 to 500 K. As the temperature was lowered, the various samples made transitions from paramagnetic to ferromagnetic phases. Furthermore, coexistence of anywhere from two to three ferromagnetic phases in the various samples was found. The third ferromagnetic phase was observed only in the samples with <i>x</i> = 0.1, 0.2, 0.3. The Curie temperatures for the various samples were estimated from the characteristics of the variable-temperature EPR spectra. The EPR data indicated the presence of Griffiths phases in the samples with <i>x</i> = 0.2, 0.3, 0.4, 0.5, 0.6, from which the respective Griffiths temperatures were determined. The activation energies were estimated here from the EPR data using the hopping model. The EPR linewidth behavior is found to be consistent with that predicted by the bottlenecked spin-relaxation model. The perovskite La<sub>0.5</sub>Eu<sub>0.2</sub>Sr<sub>0.3</sub>MnO<sub>3</sub> is potentially useful in the design of magnetocaloric refrigeration units as a working fluid, since its Curie temperature <i>T</i><sub>C</sub> is found to be close to the room temperature. The various ferromagnetic components in the samples observed here have been resolved only by the technique of EPR, not possible by other techniques.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1199 - 1219"},"PeriodicalIF":1.1,"publicationDate":"2024-08-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Study of Saturation Properties of an Inhomogeneous CW-EPR Line in the Vicinity of Rabi Resonance: Possible Application for B1 Estimation","authors":"B. Rakvin, J. Jurec","doi":"10.1007/s00723-024-01693-5","DOIUrl":"10.1007/s00723-024-01693-5","url":null,"abstract":"<div><p>The spectrum of continuous-wave electron paramagnetic resonance (CW-EPR) was analyzed with respect to the shape of the line under microwave (MW) power saturation (<span>({P}_{MW}sim {B}_{1}^{1/2};{B}_{1})</span> is intensity of MW magnetic field). The used <span>({B}_{1})</span> increases until the Rabi frequency <span>(({omega }_{1}=gamma {B}_{1})</span>, <span>(gamma)</span> is the electron gyromagnetic ratio) approaches the radiofrequency <span>(left({omega }_{rf}right))</span> used as the magnetic modulation frequency. The possible effect of Rabi resonance <span>(left({omega }_{1}={omega }_{rf}right))</span>, on spin packets system can be detected under the condition of “weak modulation near the Rabi resonance” (<span>({omega }_{2}ll {omega }_{1}approx {omega }_{rf}))</span> where <span>({omega }_{2})</span> is modulation amplitude of radiofrequency field expressed in frequency units. Inhomogeneously broadened, CW-EPR, lines of the P1 (<i>N</i><sub>s</sub><sup>0</sup>) nitrogen centers (30 ppm > [<i>N</i><sub>s</sub><sup>0</sup>] < 200 ppm) in diamond crystal and <i>E</i>’ defect in irradiated vitreous SiO<sub>2</sub> with long spin relaxation times (<span>({T}_{1})</span> and <span>({T}_{2})</span> ranged in the interval from around 2 ms to 1 µs at room temperatures) were selected for saturation study. Spectra were recorded using magnetic field modulation <span>(({omega }_{rf}/2pi =100)</span> kHz) with modulation amplitude <span>(({omega }_{2}/2pi =27text{ kHz}))</span> as the first harmonic for two phase-sensitive detections, detection in-phase with respect to the modulation frequency and detection 90° out-of-phase with respect of the modulation frequency. For the later detection, the resulting change near Rabi resonance can be related to the expected inversion of modulation sideband lines under resonance conditions. This effect detected in the saturation process on inhomogeneous spectral lines of P1 and <i>E</i>’ centers shows that both samples can be used as a standard for estimation <span>({B}_{1})</span> value.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1183 - 1197"},"PeriodicalIF":1.1,"publicationDate":"2024-08-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141936228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. F. Murzakhanov, D. V. Shurtakova, E. I. Oleynikova, G. V. Mamin, M. A. Sadovnikova, O. P. Kazarova, E. N. Mokhov, M. R. Gafurov, V. A. Soltamov
{"title":"Spin Alignment of NV− Centers in 4H- and 6H-SiC Crystals Induced by IR and Visible Optical Excitation","authors":"F. F. Murzakhanov, D. V. Shurtakova, E. I. Oleynikova, G. V. Mamin, M. A. Sadovnikova, O. P. Kazarova, E. N. Mokhov, M. R. Gafurov, V. A. Soltamov","doi":"10.1007/s00723-024-01690-8","DOIUrl":"10.1007/s00723-024-01690-8","url":null,"abstract":"<div><p>It is acknowledged that a solid-state foundation for qubit implementation can be found in optically active high-spin vacancy-type defects (color centers) in semiconductors. Silicon carbide (SiC) crystals serve as a reliable host for defects, positioning them as strong competitors to the well-known nitrogen vacancy <span>({NV}^{-})</span> centers in diamond. This paper reports on photoinduced electron paramagnetic resonance (W-band, 94 GHz) spectroscopy measurements on 4H and 6H polytype SiC crystals which exhibit distinct optically polarizable color centers due to their unique structural and electronic properties. Spin defects such as negatively charged nitrogen vacancy centers and divacancies excited at 532 nm, are present in 4H-SiC. By contrast, only <span>({NV}^{-})</span> centers excited at 980 nm are found in 6H-SiC across a wide temperature range. These features make the 6H-SiC color centers promising for quantum technologies because of their excitation and luminescence in the near-infrared telecommunications range, as well as their ability to selectively target the resonant excitation of individual-based qubits.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"1175 - 1182"},"PeriodicalIF":1.1,"publicationDate":"2024-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141880775","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Andrei V. Egorov, Maria I. Egorova, Dmitry A. Mizyulin, Marina G. Shelyapina
{"title":"Water structure and Dynamics in Microporous Mordenite","authors":"Andrei V. Egorov, Maria I. Egorova, Dmitry A. Mizyulin, Marina G. Shelyapina","doi":"10.1007/s00723-024-01692-6","DOIUrl":"10.1007/s00723-024-01692-6","url":null,"abstract":"<div><p>The local ordering and features of the molecular mobility of water confined in voids of a pure silica mordenite were studied using the molecular dynamics simulation over a temperature range from 298 to 163 K. The simulated system was a fragment of mordenite consisted of 2 × 2 × 4 unit cells filled with 384 water molecules. Three different water models: SPCE, SPCF, and TIP5P were considered. To study the effect of nanoconfinment, the results were compared with bulk water. The modeling suggests that at room temperature, a 2D (in c and b directions of the mordenite cell) water diffusion takes place, while upon cooling, the diffusion in b direction essentially slows down. The analysis of microstructure shows that the pores prevent the formation of a full tetrahedral structure of water environment that results in formation of several water substructures. A detailed analysis of water reorientational motion was carried out and the activation energies were determined from temperature dependences of the correlation times. Of the three water models considered, SPCE demonstrated the best performance. The results obtained can be helpful for interpretation of experimental temperature dependences of NMR relaxation rates for water molecules confined in porous media with complex topology.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 8","pages":"805 - 818"},"PeriodicalIF":1.1,"publicationDate":"2024-07-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770228","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
E. N. Frolova, O. A. Turanova, L. V. Bazan, I. V. Ovchinnikov, A. N. Turanov
{"title":"EPR in Research of the Magnetic Properties of Spin-Crossover Fe(III) Complexes with Polydentate Schiff Bases","authors":"E. N. Frolova, O. A. Turanova, L. V. Bazan, I. V. Ovchinnikov, A. N. Turanov","doi":"10.1007/s00723-024-01685-5","DOIUrl":"10.1007/s00723-024-01685-5","url":null,"abstract":"<div><p>Schiff bases allow the creation of compounds with a wide variety of architectures and properties and have been of interest to researchers for many years. This mini-review describes some of the possibilities of the EPR method, which we use to study Fe(III) complexes with polydentate Schiff bases, many of which have been synthesized for the first time. Obtaining information at the local level using EPR spectroscopy allows us to grasp the molecular structure–property relationship and to adjust the synthesis strategy to create multifunctional substances with predetermined properties.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 9","pages":"987 - 1010"},"PeriodicalIF":1.1,"publicationDate":"2024-07-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770227","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Insight into Details of Chemical Exchange Kinetics Studied by NMR CPMG Method","authors":"Janez Stepišnik, Aleš Mohorič","doi":"10.1007/s00723-024-01679-3","DOIUrl":"10.1007/s00723-024-01679-3","url":null,"abstract":"<div><p>A more detailed insight into the chemical kinetics and dynamics of chemical exchanges within a molecule or between molecules in liquids is made possible by the NMR CPMG method, which, in addition to the exchange rate, gives its power spectrum, which contains information about the underlying processes of chemical exchange. The applicability of the method is demonstrated by measuring the chemical exchange in an aqueous solutions of sucrose, whose rate spectra have shapes that cannot be explained as transitions in a double potential well, but after interpretation using the chemical Langevin equations, it can be explained as a cascading chemical transition across several intermediate potential walls.</p></div>","PeriodicalId":469,"journal":{"name":"Applied Magnetic Resonance","volume":"55 8","pages":"847 - 854"},"PeriodicalIF":1.1,"publicationDate":"2024-07-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s00723-024-01679-3.pdf","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141770229","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}