Biofuel Research Journal-BRJ最新文献

筛选
英文 中文
Experimental investigation of the combustion characteristics of Mahua oil biodiesel-diesel blend using a DI diesel engine modified with EGR and nozzle hole orifice diameter 在喷口直径和EGR改性直喷柴油机上对麻花油生物柴油-柴油混合燃料的燃烧特性进行了实验研究
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-09-01 DOI: 10.18331/BRJ2018.5.3.6
M. V. Kumar, A. Babu, P. R. Kumar, S. Reddy
{"title":"Experimental investigation of the combustion characteristics of Mahua oil biodiesel-diesel blend using a DI diesel engine modified with EGR and nozzle hole orifice diameter","authors":"M. V. Kumar, A. Babu, P. R. Kumar, S. Reddy","doi":"10.18331/BRJ2018.5.3.6","DOIUrl":"https://doi.org/10.18331/BRJ2018.5.3.6","url":null,"abstract":"Engine modification through reducing nozzle hole diameter (NHD) (i.e., from the base value of 0.28 to the modified value of 0.20 mm) has been shown as an effective strategy in improving engine performance, combustion, and emission parameters. However, it has also led to substantial increases in NOx emission as a major shortcoming. In light of that, the present study was aimed at overcoming this challenge through the application of a partially-cooled exhaust gas recirculation (EGR) system. More specifically, Mahua oil biodiesel-diesel blend (B20) and neat diesel were tested on a modified single cylinder diesel engine under five different engine loads (i.e., 2.46, 4.92, 7.38, 9.84, and 12.3 kg) and in the presence of varying EGR rates (i.e., 10, 20, and 30%). The results obtained revealed that the performance, combustion, and emission characteristics of the modified engine (3-hole nozzle with an orifice diameter of 0.20 mm) were improved for both neat diesel and B20 except in the case of NOx, in comparison with those of the conventional diesel engine (3-hole nozzle with an orifice diameter of 0.28 mm). The considerable increases in NOx emissions caused by the smaller orifice NHD could be successfully compensated for through the implementation of the partially-cooled EGR. Overall and based on the findings of the present study, the proposed engine modification in the presence of partially-cooled EGR rate of 10% could be recommended as efficient combustion conditions for 20% blend of Mahua oil biodiesel and diesel. However, further increments in the EGR rate and in particular at higher loads, adversely affected the performance and emission characteristics of the modified engine due to the recirculation of high amounts of unburnt soot, CO2, H2O, as well as of O2 deficiency.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47780338","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 29
Comparative investigation of the effect of hemispherical and toroidal piston bowl geometries on diesel engine combustion characteristics 半球形和环形活塞碗形状对柴油机燃烧特性影响的对比研究
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-09-01 DOI: 10.18331/BRJ2018.5.3.5
M. Channappagoudra, K. Ramesh, G. Manavendra
{"title":"Comparative investigation of the effect of hemispherical and toroidal piston bowl geometries on diesel engine combustion characteristics","authors":"M. Channappagoudra, K. Ramesh, G. Manavendra","doi":"10.18331/BRJ2018.5.3.5","DOIUrl":"https://doi.org/10.18331/BRJ2018.5.3.5","url":null,"abstract":"Diesel engine parameters are in general more compatible with operating on neat diesel than biodiesel and its blends. Therefore, optimizing operating conditions as well as piston bowl geometry to achieve a better performance with biodiesel in conventional diesel engines is highly essential. In the present study, hemispherical piston bowl geometry (HPBG) of existing diesel engine was modified into toroidal piston bowl geometry (TPBG) to evaluate the performance of a diesel engine running on a 20% blend of dairy scum oil biodiesel (B20). The experimental results revealed increased brake thermal efficiency and heat release rate by 5.5% and 17.24%, respectively, while brake specific fuel consumption, HC emission, and CO emission were decreased by 8.75%, 15%, and 14.47%, respectively, in response to the engine modification applied. Such improvements using the TPBG could be attributed to improved fuel atomization, reduction of fuel droplet size, increased cylinder temperature, enhanced squish-swirl, and turbulence kinetic energy during combustion. The findings of the present study could pave the way for the fabrication of diesel engines, which are more efficiently compatible with biodiesel and its blends.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47197877","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 15
Green diesel production through simultaneous deoxygenation of palmitic acid and desulfurization of 4,6-Dimethyl-dibenzothiophene over commercial CoMo/Al2O3 在商用CoMo/Al2O3上同时进行棕榈酸脱氧和4,6-二甲基二苯并噻吩脱硫生产绿色柴油
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-06-01 DOI: 10.18331/BRJ2018.5.2.6
Sunya Boonyasuwat, J. Tscheikuna
{"title":"Green diesel production through simultaneous deoxygenation of palmitic acid and desulfurization of 4,6-Dimethyl-dibenzothiophene over commercial CoMo/Al2O3","authors":"Sunya Boonyasuwat, J. Tscheikuna","doi":"10.18331/BRJ2018.5.2.6","DOIUrl":"https://doi.org/10.18331/BRJ2018.5.2.6","url":null,"abstract":"This study investigated the deoxygenation of palmitic acid as a model compound of palm fatty acid distillate (PFAD), in the presence of 4,6- di-methyl-di-benzothiophene as a sulfur-containing light gas oil (LGO). Reactions were performed at the pressure of 25 barg, liquid hourly space velocity (LHSV) of 1.7 h-1, and H2/oil of 630 NL/L over CoMo/Al2O3 as catalyst. The effect of temperature was studied in the range of 275-300 oC. Both deoxygenation and desulfurization led to approximately 100% conversions at 300 oC, while at 275 oC, palmitic acid deoxygenation was recorded at a higher conversion rate compared with that of the desulfurization of 4,6- di-methyl-di-benzothiophene. The presence of 4,6- di-methyl-di-benzothiophene during the deoxygenation of palmitic acid resulted in high conversions (>95%). Pressure drop studies showed that the formation of heavy products caused a gradual pressure drop throughout the reactor over time. The catalyst was deactivated during 10 d. Two different sulfur-containing reagents were used for catalyst reactivation including dimethyl-disulfide in n-C18 and LGO containing 484 ppmw of sulfur. Reactivation with 2 wt.% of dimethyl-disulfide in n-C18 at 320 oC for 36 h led to more favrable performance recovery vs. the sulfur-containing LGO.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41822714","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 3
Editorial Board 编辑委员会
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-06-01 DOI: 10.18331/brj2018.5.2.1
{"title":"Editorial Board","authors":"","doi":"10.18331/brj2018.5.2.1","DOIUrl":"https://doi.org/10.18331/brj2018.5.2.1","url":null,"abstract":"","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43688061","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Lipid accumulation from glucose and xylose in an engineered, naturally oleaginous strain of Saccharomyces cerevisiae 从葡萄糖和木糖中脂质积累的工程,天然产油酿酒酵母菌株
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-06-01 DOI: 10.18331/BRJ2018.5.2.3
E. Knoshaug, S. V. Wychen, Arjun Singh, Min Zhang
{"title":"Lipid accumulation from glucose and xylose in an engineered, naturally oleaginous strain of Saccharomyces cerevisiae","authors":"E. Knoshaug, S. V. Wychen, Arjun Singh, Min Zhang","doi":"10.18331/BRJ2018.5.2.3","DOIUrl":"https://doi.org/10.18331/BRJ2018.5.2.3","url":null,"abstract":"Saccharomyces cerevisiae, a well-known industrial yeast for alcoholic fermentation, is not historically known to accumulate lipids. Four S. cerevisiae strains used in industrial applications were screened for their ability to accumulate neutral lipids. Only one, D5A, was found to accumulate up to 20% dry cell weight (dcw) lipids. This strain was further engineered by knocking out ADP-activated serine/threonine kinase (SNF1) which increased lipid accumulation to 35% dcw lipids. In addition, we engineered D5A to utilize xylose and found that D5A accumulates up to 37% dcw lipids from xylose as the sole carbon source. Further we over-expressed different diacylglycerol acyltransferase (DGA1) genes and boosted lipid accumulation to 50%. Fatty acid speciation showed that 94% of the extracted lipids consisted of 5 fatty acid species, C16:0 (palmitic), C16:1n7 (palmitoleic), C18:0 (stearic), C18:1n7 (vaccenic), and C18:1n9 (oleic), while the relative distributions changed depending on growth conditions. In addition, this strain accumulated lipids concurrently with ethanol production.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"45002599","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 13
Towards nanotechnology-based biofuel industry 迈向以纳米技术为基础的生物燃料产业
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-06-01 DOI: 10.18331/BRJ2018.5.2.2
A. Nizami, M. Rehan
{"title":"Towards nanotechnology-based biofuel industry","authors":"A. Nizami, M. Rehan","doi":"10.18331/BRJ2018.5.2.2","DOIUrl":"https://doi.org/10.18331/BRJ2018.5.2.2","url":null,"abstract":"The biofuel industry is rapidly growing with a promising role in producing renewable energy and tackling climate change. Nanotechnology has tremendous potential to achieve cost-effective and process-efficient biofuel industry. Various nanomaterials have been developed with unique properties for enhanced biofuel production/utilization. The way forward is to develop nanotechnology-based biofuel systems at industrial scale.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47676408","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 68
Magnetically recyclable nanocatalysts based on magnetite: an environmentally friendly and recyclable catalyst for esterification reactions 基于磁铁矿的磁性可回收纳米催化剂:一种环保且可回收的酯化反应催化剂
IF 13
Biofuel Research Journal-BRJ Pub Date : 2018-06-01 DOI: 10.18331/BRJ2018.5.2.4
V. C. D. Santos-Durndell, T. Peruzzolo, G. M. Ucoski, L. Ramos, S. Nakagaki
{"title":"Magnetically recyclable nanocatalysts based on magnetite: an environmentally friendly and recyclable catalyst for esterification reactions","authors":"V. C. D. Santos-Durndell, T. Peruzzolo, G. M. Ucoski, L. Ramos, S. Nakagaki","doi":"10.18331/BRJ2018.5.2.4","DOIUrl":"https://doi.org/10.18331/BRJ2018.5.2.4","url":null,"abstract":"Solid magnetic nanoparticles (magnetite = Mag) composed of Fe3O4 and magnetite coated with silica (Fe3O4/SiO2 = Mag/Si) were prepared from inexpensive starting materials. The catalytic activity of the solids was investigated for palmitic acid esterification with methanol under solvothermal conditions. Both pure Fe3O4 (Mag) and silica-coated (Mag/Si) nanoparticles exhibited high catalytic activities and were easy to recover from the reaction environment using an external magnet. Furthermore, the magnetic nanoparticle catalysts were reused without significant loss of catalytic activity and showed high durability in typical acid-catalyzed reactions. XRD and SEM analyses were conducted before and after esterification, showing almost identical particle distribution in both fresh and reused catalysts.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":null,"pages":null},"PeriodicalIF":13.0,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46946897","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 17
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信