Towards nanotechnology-based biofuel industry

IF 14.4 Q1 ENERGY & FUELS
A. Nizami, M. Rehan
{"title":"Towards nanotechnology-based biofuel industry","authors":"A. Nizami, M. Rehan","doi":"10.18331/BRJ2018.5.2.2","DOIUrl":null,"url":null,"abstract":"The biofuel industry is rapidly growing with a promising role in producing renewable energy and tackling climate change. Nanotechnology has tremendous potential to achieve cost-effective and process-efficient biofuel industry. Various nanomaterials have been developed with unique properties for enhanced biofuel production/utilization. The way forward is to develop nanotechnology-based biofuel systems at industrial scale.","PeriodicalId":46938,"journal":{"name":"Biofuel Research Journal-BRJ","volume":" ","pages":""},"PeriodicalIF":14.4000,"publicationDate":"2018-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"68","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuel Research Journal-BRJ","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.18331/BRJ2018.5.2.2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 68

Abstract

The biofuel industry is rapidly growing with a promising role in producing renewable energy and tackling climate change. Nanotechnology has tremendous potential to achieve cost-effective and process-efficient biofuel industry. Various nanomaterials have been developed with unique properties for enhanced biofuel production/utilization. The way forward is to develop nanotechnology-based biofuel systems at industrial scale.
迈向以纳米技术为基础的生物燃料产业
生物燃料工业正在迅速发展,在生产可再生能源和应对气候变化方面发挥着有希望的作用。纳米技术在实现经济高效的生物燃料工业方面具有巨大的潜力。为了提高生物燃料的生产/利用,各种具有独特性能的纳米材料已经被开发出来。未来的道路是在工业规模上开发基于纳米技术的生物燃料系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
CiteScore
22.10
自引率
1.50%
发文量
15
审稿时长
8 weeks
期刊介绍: Biofuel Research Journal (BRJ) is a leading, peer-reviewed academic journal that focuses on high-quality research in the field of biofuels, bioproducts, and biomass-derived materials and technologies. The journal's primary goal is to contribute to the advancement of knowledge and understanding in the areas of sustainable energy solutions, environmental protection, and the circular economy. BRJ accepts various types of articles, including original research papers, review papers, case studies, short communications, and hypotheses. The specific areas covered by the journal include Biofuels and Bioproducts, Biomass Valorization, Biomass-Derived Materials for Energy and Storage Systems, Techno-Economic and Environmental Assessments, Climate Change and Sustainability, and Biofuels and Bioproducts in Circular Economy, among others. BRJ actively encourages interdisciplinary collaborations among researchers, engineers, scientists, policymakers, and industry experts to facilitate the adoption of sustainable energy solutions and promote a greener future. The journal maintains rigorous standards of peer review and editorial integrity to ensure that only impactful and high-quality research is published. Currently, BRJ is indexed by several prominent databases such as Web of Science, CAS Databases, Directory of Open Access Journals, Scimago Journal Rank, Scopus, Google Scholar, Elektronische Zeitschriftenbibliothek EZB, et al.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信