{"title":"Heliospheric 3-D MHD ENLIL simulations of multi-CME and multi-spacecraft events","authors":"D. Odstrcil","doi":"10.3389/fspas.2023.1226992","DOIUrl":"https://doi.org/10.3389/fspas.2023.1226992","url":null,"abstract":"Interpreting multi-spacecraft heliospheric observations of the evolving solar wind (SW) streams with propagating and interacting coronal mass ejections (CMEs) is challenging. Numerical simulations can provide global context and suggest what may and may not be observed. The heliospheric three-dimensional (3D) magnetohydrodynamic (MHD) ENLIL model can provide a near-real-time prediction of heliospheric space weather, and it is used at NASA Community Coordinated Modeling Center (CCMC), NOAA Space Weather Prediction Center (SWPC), and UK Meteorological Office (MetOffice). However, this version does not show its full potential, especially in the case of multi-CME events observed by various spacecraft. We describe tools developed to interpret remote observations and in-situ measurements better and apply them to multi-CME events observed by ACE, STEREO-A, Parker Solar Probe (PSP), BepiColombo, and Solar Orbiter. We present some results on 1) global structures of the SW speed and density at the ecliptic, 2) the evolution of SW parameters at the spacecraft, 3) magnetic field connectivity at the spacecraft, 4) automatic detection of shock parameters and alert plots, and 5) synthetic white-light (WL) imaging. This paper is not on model initialization or analyzing specific CME events, but it describes features not used at space weather prediction centers and provided by NASA/CCMC Run-On-Request service. This paper advertises new tools and shows their benefits when applied to selected heliospheric space weather events observed at near-Earth, PSP, Solar Orbiter, and STEREO-A spacecraft.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41724899","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Drift phase resolved diffusive radiation belt model: 2. implementation in a case of random electric potential fluctuations","authors":"S. Lejosne, J. Albert, S. Walton","doi":"10.3389/fspas.2023.1232512","DOIUrl":"https://doi.org/10.3389/fspas.2023.1232512","url":null,"abstract":"In the first part of this work, we highlighted a drift-diffusion equation capable of resolving the magnetic local time dimension when describing the effects of trapped particle transport on radiation belt intensity. Here, we implement these general considerations in a special case. Specifically, we determine the various transport and diffusion coefficients required to solve the drift-diffusion equation for equatorial electrons drifting in a dipole magnetic field in the presence of a specific model of time-varying electric fields. Random electric potential fluctuations, described as white noise, drive fluctuations of trapped particle drift motion. We also run a numerical experiment that consists of tracking trapped particles’ drift motion. We use the results to illustrate the validity of the drift-diffusion equation by showing agreement in the solutions. Our findings depict how a structure initially localized in magnetic local time generates drift-periodic signatures that progressively dampen with time due to the combined effects of radial and azimuthal diffusions. In other words, we model the transition from a drift-dominated regime, to a diffusion-dominated regime. We also demonstrate that the drift-diffusion equation is equivalent to a standard radial diffusion equation once the distribution function is phase-mixed. The drift-diffusion equation will allow for radiation belt modeling with a better spatiotemporal resolution than radial diffusion models once realistic inputs, including localized transport and diffusion coefficients, are determined.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"49552868","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
S. Sobhkhiz-Miandehi, Y. Yamazaki, C. Arras, D. Themens
{"title":"A comparison of FORMOSAT-3/COSMIC radio occultation and ionosonde measurements in sporadic E detection over mid- and low-latitude regions","authors":"S. Sobhkhiz-Miandehi, Y. Yamazaki, C. Arras, D. Themens","doi":"10.3389/fspas.2023.1198071","DOIUrl":"https://doi.org/10.3389/fspas.2023.1198071","url":null,"abstract":"The investigation of sporadic E or Es layers typically relies on ground-based or satellite data. This study compares the Es layers recorded in ionograms with those detected using GNSS L1 signal-to-noise ratio data from FORMOSAT-3/COSMIC radio occultation at mid and low latitudes. GPS radio occultation measurements of Es layers, during an 11-year time span of 2007–2017, within a 2° latitude × 5° longitude grid around each ionosonde site are compared to the Es recordings of the ionosonde. By comparing multi-year radio occultation data with recordings from six ionosonde stations at mid and low latitudes, it was discovered that at least 20% of the Es layer detection results between each ionosonde and its crossing GPS radio occultation measurements did not agree. The results show that the agreement between the two methods in Es detection is highly dependent on the season and local time. This study suggests that Es layer recordings from ground-based ionosonde observations have the best agreement with the Es layers detected by radio occultation data during daytime and local summers. The difference in the Es detection mechanisms between the two methods can explain the inconsistency between Es events measured by these two methods. The detection of Es layers in ionograms relies on the high plasma concentration in the E region, whereas signal scintillations caused by a large vertical gradient of the plasma density in the E region are considered a sign of Es occurrence in satellite techniques.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46848565","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Hard rock dark biosphere and habitability","authors":"C. Escudero, R. Amils","doi":"10.3389/fspas.2023.1203845","DOIUrl":"https://doi.org/10.3389/fspas.2023.1203845","url":null,"abstract":"The discovery that most of the prokaryotic diversity and biomass on Earth resides in the deep subsurface, calls for an improved definition of habitability, which should consider the existence of dark biospheres in other planets and moons of the Solar System and beyond. The discovery of “interior liquid water worlds” on some ice moons with waterless surfaces has piqued wide astrobiological interest, but the sporadic mentions of the possibility of life in the deep subsurface of rocky planets in recent habitability reviews calls for a methodical effort to develop sufficient knowledge, both scientific and technological, to include the dark biospheres in our habitability assessments. In this review we analyze recent developments and the methodologies employed to characterize Earth’s continental hard rock deep subsurface to both prepare the future exploration of the putative dark biosphere of Mars and to highlight its importance when evaluating planetary habitability.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46403613","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
T. Niembro, D. Seaton, P. Hess, D. Berghmans, V. Andretta, K. Reeves, P. Riley, M. Stevens, F. Landini, C. Sasso, C. Verbeeck, R. Susino, M. Uslenghi
{"title":"A prominence eruption from the Sun to the Parker Solar Probe with multi-spacecraft observations","authors":"T. Niembro, D. Seaton, P. Hess, D. Berghmans, V. Andretta, K. Reeves, P. Riley, M. Stevens, F. Landini, C. Sasso, C. Verbeeck, R. Susino, M. Uslenghi","doi":"10.3389/fspas.2023.1191294","DOIUrl":"https://doi.org/10.3389/fspas.2023.1191294","url":null,"abstract":"In the early hours of 2021 April 25, the Solar Probe Cup on board Parker Solar Probe registered the passage of a solar wind structure characterized by a clear and constant He2+/H+ density ratio above 6% during three hours. The He2+ contribution remained present but fainting and intermittent within a twelve-hour window. Solar Orbiter and Parker Solar Probe were in nearly perfect quadrature, allowing for optimal observing configuration in which the material impacting the Parker Solar Probe was in the Solar Orbiter plane of the sky and visible off the limb. In this work, we report the journey of the helium-enriched plasma structure from the Sun to the Parker Solar Probe by combining multi-spacecraft remote-sensing and in situ measurements. We identify an erupting prominence as the likely source, behind the Sun relative to the Earth, but visible to multiple instruments on both the Solar-Terrestrial Relations Observatory-A and Solar Orbiter. The associated CME was also observed by coronagraphs and heliospheric imagers from both spacecrafts before reaching the Parker Solar Probe at 46 R⊙, 8 h after the spacecraft registered a crossing of the heliospheric current sheet. Except for extraordinary helium enhancement, the CME showed ordinary plasma signatures and a complex magnetic field with an overall strength enhancement. The images from the Wide-field Imager for Solar Probe (WISPR) aboard Parker Solar Probe show a structure entering the field of view a few hours before the in situ crossing, followed by repetitive transient structures that may be the result of flying through the CME body. We believe this to be the first example of a CME being imaged by WISPR directly before and during being detected in situ. This study highlights the potential of combining the Parker Solar Probe in situ measurements in the inner heliosphere with simultaneous remote-sensing observations in (near) quadrature from other spacecrafts.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41777446","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Tyler Wallentine, David Merkley, N. Langenfeld, B. Bugbee, L. Seefeldt
{"title":"Approaches to nitrogen fixation and recycling in closed life-support systems","authors":"Tyler Wallentine, David Merkley, N. Langenfeld, B. Bugbee, L. Seefeldt","doi":"10.3389/fspas.2023.1176576","DOIUrl":"https://doi.org/10.3389/fspas.2023.1176576","url":null,"abstract":"N2 fixation is essential to the sustainability and operation of nitrogen systems but is energetically expensive. We developed a model and used sensitivity analysis to identify the impact of aerobic and anaerobic waste digestion, crop harvest index, rates of recovery of recalcitrant N, and the rate of N2 fixation in a system combining nitrogen fixation and recycling. The model indicates that the rate of N2 fixation, loss from reactors, fertilization efficiency, and crop harvest index have the largest impact on maintaining bioavailable N. N recoveries from aerobic and anaerobic digestion, as well as direct-to-soil fertilization, are not well characterized, but the case studies using this model indicate that their efficiencies are critical to N recovery. The findings of this model and its presented case studies can be used as a guide in the design of closed-loop habitats both on Earth and in space. These results reveal a clear need for continued research in the areas of N-efficient digestion, fertilization, and fixation.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44454318","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Comparing magnetopause predictions from two MHD models during a geomagnetic storm and a quiet period","authors":"P. Dredger, R. Lopez, Y. Collado-Vega","doi":"10.3389/fspas.2023.1213331","DOIUrl":"https://doi.org/10.3389/fspas.2023.1213331","url":null,"abstract":"Magnetopause location is an important prediction of numerical simulations of the magnetosphere, yet the models can err, either under-predicting or over-predicting the motion of the boundary. This study compares results from two of the most widely used magnetohydrodynamic (MHD) models, the Lyon–Fedder–Mobarry (LFM) model and the Space Weather Modeling Framework (SWMF), to data from the GOES 13 and 15 satellites during the geomagnetic storm on 22 June 2015, and to THEMIS A, D, and E during a quiet period on 31 January 2013. The models not only reproduce the magnetopause crossings of the spacecraft during the storm, but they also predict spurious magnetopause motion after the crossings seen in the GOES data. We investigate the possible causes of the over-predictions during the storm and find the following. First, using different ionospheric conductance models does not significantly alter predictions of the magnetopause location. Second, coupling the Rice Convection Model (RCM) to the MHD codes improves the SWMF magnetopause predictions more than it does for the LFM predictions. Third, the SWMF produces a stronger ring current than LFM, both with and without the RCM and regardless of the LFM spatial resolution. During the non-storm event, LFM predicts the THEMIS magnetopause crossings due to the southward interplanetary magnetic field better than the SWMF. Additionally, increasing the LFM spatial grid resolution improves the THEMIS predictions, while increasing the SWMF grid resolutions does not.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43740348","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
B. Isham, T. Bullett, B. Gustavsson, E. Polisensky, C. Brum, C. Fallen, V. Belyey, F. Parra-Rojas, Leila Norouzi, Arturs Stramkals, M. B. Ökten
{"title":"Science goals for a high-frequency radar and radio imaging array","authors":"B. Isham, T. Bullett, B. Gustavsson, E. Polisensky, C. Brum, C. Fallen, V. Belyey, F. Parra-Rojas, Leila Norouzi, Arturs Stramkals, M. B. Ökten","doi":"10.3389/fspas.2023.1064368","DOIUrl":"https://doi.org/10.3389/fspas.2023.1064368","url":null,"abstract":"A medium and high-frequency antenna array for radar and radio imaging of the ionosphere is planned for installation in Aguadilla, Puerto Rico. Science goals include the study of space weather, radio propagation, meteors, lightning, and plasma physics. Radio imaging is ideal for the study of stimulated ionospheric radio emissions, such as those induced by the Arecibo Observatory high-power HF radio transmitter, which is likely to be restored to operation in the near future. The array will be complemented by a wide variety of instruments fielded by collaborators, and will be a rich source of student projects at all levels.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47893616","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Occurrence of heavy precipitation influenced by solar wind high-speed streams through vertical atmospheric coupling","authors":"P. Prikryl, Vojto Rušin","doi":"10.3389/fspas.2023.1196231","DOIUrl":"https://doi.org/10.3389/fspas.2023.1196231","url":null,"abstract":"A tendency of heavy rainfall-induced floods in Canada to follow arrivals of solar wind high-speed streams (HSSs) from coronal holes is observed. Precipitation events during the winter, including extreme freezing rain events in the province of New Brunswick, also tend to occur following HSSs. More direct evidence is provided using the satellite-based gridded precipitation dataset Integrated Multi-satellitE Retrievals for GPM (IMERG) in the superposed epoch analysis of high-rate precipitation. The results show an increase in the high-rate daily precipitation occurrence over Canada following arrivals of major HSSs. This is consistent with previously published results for other mid-latitude geographic regions. The ERA5 meteorological reanalysis is used to evaluate the slantwise convective available potential energy (SCAPE) that is of importance in the development of storms. The role of the solar wind-magnetosphere-ionosphere-atmosphere coupling, mediated by globally propagating aurorally excited atmospheric gravity waves releasing the conditional symmetric instability in the troposphere leading to convection and precipitation, is proposed.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"47859612","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
F. Chiappetta, M. Laurenza, F. Lepreti, S. Benella, G. Consolini, M. F. Marcucci
{"title":"The energetic storm particle events of 3 November 2021","authors":"F. Chiappetta, M. Laurenza, F. Lepreti, S. Benella, G. Consolini, M. F. Marcucci","doi":"10.3389/fspas.2023.1209479","DOIUrl":"https://doi.org/10.3389/fspas.2023.1209479","url":null,"abstract":"Observations of energetic particles at interplanetary shocks are important to study acceleration mechanisms and their connection with magnetohydrodynamic turbulence. Energetic storm particle (ESP) events are increases in proton fluxes that occur locally at the passage time of interplanetary shocks. These events are more dangerous when they are superimposed on the solar energetic particles (SEPs) produced by the eruption of flares and/or CME-driven shocks propagating from the corona to the interplanetary space. We considered ESP events occurring in association with SEPs on 3 November 2021. We used proton fluxes provided by Solar Orbiter (located at 0.85 AU) in the energy range of 30 keV–82 MeV, by Wind at energies from 70 keV to 72 MeV, and ACE in the range from 40 keV to 5 MeV (both located at the Lagrangian point L1, close to 1 AU along the Sun-Earth direction). In order to broaden the range of analyzed energies (40 keV - 72 MeV), we combine these data with the proton fluxes from the SOHO spacecraft, also located at L1. We analyzed the ESP event and fitted the proton energy spectra at both locations with several distributions to shed light on the mechanisms leading to the acceleration of energetic particles. We also investigated the turbulent magnetic field fluctuations around the shock. The obtained ESP spectra, best reproduced by the so-called double power law function, the spectral differences at the two locations, and the shock features (quasi-parallel geometry, enhanced downstream turbulence) suggest that diffusive shock acceleration is responsible for acceleration of low energy particles, whereas stochastic acceleration contributes to the (re) acceleration of high energies ones.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":3.0,"publicationDate":"2023-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43412619","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}