Approaches to nitrogen fixation and recycling in closed life-support systems

IF 2.6 3区 物理与天体物理 Q2 ASTRONOMY & ASTROPHYSICS
Tyler Wallentine, David Merkley, N. Langenfeld, B. Bugbee, L. Seefeldt
{"title":"Approaches to nitrogen fixation and recycling in closed life-support systems","authors":"Tyler Wallentine, David Merkley, N. Langenfeld, B. Bugbee, L. Seefeldt","doi":"10.3389/fspas.2023.1176576","DOIUrl":null,"url":null,"abstract":"N2 fixation is essential to the sustainability and operation of nitrogen systems but is energetically expensive. We developed a model and used sensitivity analysis to identify the impact of aerobic and anaerobic waste digestion, crop harvest index, rates of recovery of recalcitrant N, and the rate of N2 fixation in a system combining nitrogen fixation and recycling. The model indicates that the rate of N2 fixation, loss from reactors, fertilization efficiency, and crop harvest index have the largest impact on maintaining bioavailable N. N recoveries from aerobic and anaerobic digestion, as well as direct-to-soil fertilization, are not well characterized, but the case studies using this model indicate that their efficiencies are critical to N recovery. The findings of this model and its presented case studies can be used as a guide in the design of closed-loop habitats both on Earth and in space. These results reveal a clear need for continued research in the areas of N-efficient digestion, fertilization, and fixation.","PeriodicalId":46793,"journal":{"name":"Frontiers in Astronomy and Space Sciences","volume":" ","pages":""},"PeriodicalIF":2.6000,"publicationDate":"2023-08-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Astronomy and Space Sciences","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.3389/fspas.2023.1176576","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
引用次数: 0

Abstract

N2 fixation is essential to the sustainability and operation of nitrogen systems but is energetically expensive. We developed a model and used sensitivity analysis to identify the impact of aerobic and anaerobic waste digestion, crop harvest index, rates of recovery of recalcitrant N, and the rate of N2 fixation in a system combining nitrogen fixation and recycling. The model indicates that the rate of N2 fixation, loss from reactors, fertilization efficiency, and crop harvest index have the largest impact on maintaining bioavailable N. N recoveries from aerobic and anaerobic digestion, as well as direct-to-soil fertilization, are not well characterized, but the case studies using this model indicate that their efficiencies are critical to N recovery. The findings of this model and its presented case studies can be used as a guide in the design of closed-loop habitats both on Earth and in space. These results reveal a clear need for continued research in the areas of N-efficient digestion, fertilization, and fixation.
封闭式生命支持系统中的氮固定和回收方法
N2固定对氮气系统的可持续性和操作至关重要,但在能量上是昂贵的。我们开发了一个模型,并使用敏感性分析来确定好氧和厌氧废物消化、作物收获指数、难降解氮的回收率以及固氮和循环系统中的固氮率的影响。该模型表明,N2固定率、反应器损失、施肥效率和作物收获指数对维持好氧和厌氧消化以及直接土壤施肥的生物可利用氮回收率影响最大,但使用该模型的案例研究表明,它们的效率对氮回收至关重要。该模型的发现及其案例研究可作为地球和太空闭环栖息地设计的指南。这些结果表明,在氮高效消化、施肥和固定方面显然需要继续研究。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 求助全文
来源期刊
Frontiers in Astronomy and Space Sciences
Frontiers in Astronomy and Space Sciences ASTRONOMY & ASTROPHYSICS-
CiteScore
3.40
自引率
13.30%
发文量
363
审稿时长
14 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信