International Journal of Tryptophan Research最新文献

筛选
英文 中文
Baseline Inflammation but not Exercise Modality Impacts Exercise-induced Kynurenine Pathway Modulation in Persons With Multiple Sclerosis: Secondary Results From a Randomized Controlled Trial. 基线炎症而非运动方式会影响多发性硬化症患者运动诱导的犬尿氨酸通路调节:随机对照试验的次要结果。
IF 2.7
International Journal of Tryptophan Research Pub Date : 2024-11-11 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241284423
Marie Kupjetz, Nadine Patt, Niklas Joisten, Per Magne Ueland, Adrian McCann, Roman Gonzenbach, Jens Bansi, Philipp Zimmer
{"title":"Baseline Inflammation but not Exercise Modality Impacts Exercise-induced Kynurenine Pathway Modulation in Persons With Multiple Sclerosis: Secondary Results From a Randomized Controlled Trial.","authors":"Marie Kupjetz, Nadine Patt, Niklas Joisten, Per Magne Ueland, Adrian McCann, Roman Gonzenbach, Jens Bansi, Philipp Zimmer","doi":"10.1177/11786469241284423","DOIUrl":"https://doi.org/10.1177/11786469241284423","url":null,"abstract":"<p><strong>Background: </strong>The kynurenine pathway (KP) is an important hub in neuroimmune crosstalk that is dysregulated in persons with multiple sclerosis (pwMS) and modulated by exercise in a modality-specific manner.</p><p><strong>Objectives: </strong>To compare changes in the KP metabolite profile of pwMS (1) following combined treatments including either high-intensity interval training (HIIT) or moderate-intensity continuous training (MICT) during a 3-week multimodal rehabilitation, (2) to evaluate exercise response in relation to baseline systemic inflammation, and (3) to investigate associations of kynurenines with physical capacity and clinical outcomes.</p><p><strong>Methods: </strong>For this secondary analysis of a randomized controlled trial, serum concentrations of kynurenines at baseline and after 3 weeks were determined using targeted metabolomics (LC-MS/MS). Exercise-induced changes in the KP metabolite profile according to treatment and baseline systemic inflammation (neutrophil-to-lymphocyte ratio (NLR) <3.12 versus ⩾3.12) were investigated using covariance analyses.</p><p><strong>Results: </strong>Regardless of treatment, concentrations of tryptophan and most kynurenines decreased over time. Quinolinic acid concentration increased (<i>p</i> < .001). Participants with low and high NLR revealed differential exercise-induced changes in concentrations of kynurenines and NLR. The systemic inflammation markers neopterin (<i>p</i> = .015) and NLR (<i>p</i> < .001) decreased in the whole group and in participants with high NLR, respectively.</p><p><strong>Conclusions: </strong>Combined treatments including HIIT or MICT do not differentially modulate the KP metabolite profile, with both reducing concentrations of most kynurenines. Baseline systemic inflammation may impact exercise-induced changes in the KP metabolite profile and anti-inflammatory effects of exercise in pwMS.</p><p><strong>Trial registration: </strong>clinicaltrials.gov (identifier: NCT04356248).</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241284423"},"PeriodicalIF":2.7,"publicationDate":"2024-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11555752/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142629900","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Erratum to 'Dietary Hesperidin Suppresses Lipopolysaccharide-Induced Inflammation in Male Mice'. 膳食橙皮甙可抑制脂多糖诱导的雄性小鼠炎症》的勘误。
IF 2.7
International Journal of Tryptophan Research Pub Date : 2024-09-05 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241276659
{"title":"Erratum to 'Dietary Hesperidin Suppresses Lipopolysaccharide-Induced Inflammation in Male Mice'.","authors":"","doi":"10.1177/11786469241276659","DOIUrl":"https://doi.org/10.1177/11786469241276659","url":null,"abstract":"<p><p>[This corrects the article DOI: 10.1177/11786469221128697.].</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241276659"},"PeriodicalIF":2.7,"publicationDate":"2024-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11378225/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"142156312","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Investigations Towards Tryptophan Uptake and Transport Across an In Vitro Model of the Oral Mucosa Epithelium. 色氨酸在口腔黏膜上皮细胞体外模型中的吸收和转运研究
IF 2.7
International Journal of Tryptophan Research Pub Date : 2024-07-31 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241266312
Grace C Lin, Julia Tevini, Lisa Mair, Heinz-Peter Friedl, Dietmar Fuchs, Thomas Felder, Johanna M Gostner, Winfried Neuhaus
{"title":"Investigations Towards Tryptophan Uptake and Transport Across an In Vitro Model of the Oral Mucosa Epithelium.","authors":"Grace C Lin, Julia Tevini, Lisa Mair, Heinz-Peter Friedl, Dietmar Fuchs, Thomas Felder, Johanna M Gostner, Winfried Neuhaus","doi":"10.1177/11786469241266312","DOIUrl":"10.1177/11786469241266312","url":null,"abstract":"<p><p>Tryptophan is an essential amino acid and plays an important role in several metabolic processes relevant for the human health. As the main metabolic pathway for tryptophan along the kynurenine axis is involved in inflammatory responses, changed metabolite levels can be used to monitor inflammatory diseases such as ulcerative colitis. As a progenitor of serotonin, altered tryptophan levels have been related to several neurogenerative diseases as well as depression or anxiety. While tryptophan concentrations are commonly evaluated in serum, a non-invasive detection approach using saliva might offer significant advantages, especially during long-term treatments of patients or elderly. In order to estimate whether active transport processes for tryptophan might contribute to a potential correlation between blood and saliva tryptophan concentrations, we investigated tryptophan's transport across an established oral mucosa in vitro model. Interestingly, treatment with tryptophan revealed a concentration dependent secretion of tryptophan and the presence of a saturable transporter while transport studies with deuterated tryptophan displayed increased permeability from the saliva to the blood compartment. Protein analysis demonstrated a distinct expression of L-type amino acid transporter 1 (LAT1), the major transporter for tryptophan, and exposure to inhibitors (2 -amino-2-norbornanecarboxylic acid (BCH), L-leucine) led to increased tryptophan levels on the saliva side. Additionally, exposure to tryptophan in equilibrium studies resulted in a regulation of LAT1 at the mRNA level. The data collected in this study suggest the participation of active transport mechanisms for tryptophan across the oral mucosa epithelium. Future studies should investigate the transport of tryptophan across salivary gland epithelia in order to enable a comprehensive understanding of tryptophan exchange at the blood-saliva barrier.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241266312"},"PeriodicalIF":2.7,"publicationDate":"2024-07-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11292681/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141876308","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Tryptophan Metabolite Indole-3-Propionic Acid Raises Kynurenic Acid Levels in the Rat Brain In Vivo. 色氨酸代谢物吲哚-3-丙酸能提高大鼠脑内犬尿氨酸的水平
IF 2.7
International Journal of Tryptophan Research Pub Date : 2024-06-20 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241262876
Korrapati V Sathyasaikumar, Tonali Blanco-Ayala, Yiran Zheng, Lilly Schwieler, Sophie Erhardt, Maximilian Tufvesson-Alm, Burkhard Poeggeler, Robert Schwarcz
{"title":"The Tryptophan Metabolite Indole-3-Propionic Acid Raises Kynurenic Acid Levels in the Rat Brain In Vivo.","authors":"Korrapati V Sathyasaikumar, Tonali Blanco-Ayala, Yiran Zheng, Lilly Schwieler, Sophie Erhardt, Maximilian Tufvesson-Alm, Burkhard Poeggeler, Robert Schwarcz","doi":"10.1177/11786469241262876","DOIUrl":"10.1177/11786469241262876","url":null,"abstract":"<p><p>Alterations in the composition of the gut microbiota may be causally associated with several brain diseases. Indole-3-propionic acid (IPrA) is a tryptophan-derived metabolite, which is produced by intestinal commensal microbes, rapidly enters the circulation, and crosses the blood-brain barrier. IPrA has neuroprotective properties, which have been attributed to its antioxidant and bioenergetic effects. Here, we evaluate an alternative and/or complementary mechanism, linking IPrA to kynurenic acid (KYNA), another neuroprotective tryptophan metabolite. Adult Sprague-Dawley rats received an oral dose of IPrA (200 mg/kg), and both IPrA and KYNA were measured in plasma and frontal cortex 90 minutes, 6 or 24 hours later. IPrA and KYNA levels increased after 90 minutes and 6 hours (brain IPrA: ~56- and ~7-fold; brain KYNA: ~4- and ~3-fold, respectively). In vivo microdialysis, performed in the medial prefrontal cortex and in the striatum, revealed increased KYNA levels (~2.5-fold) following the administration of IPrA (200 mg/kg, p.o), but IPrA failed to affect extracellular KYNA when applied locally. Finally, treatment with 100 or 350 mg IPrA, provided daily to the animals in the chow for a week, resulted in several-fold increases of IPrA and KYNA levels in both plasma and brain. These results suggest that exogenously supplied IPrA may provide a novel strategy to affect the function of KYNA in the mammalian brain.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241262876"},"PeriodicalIF":2.7,"publicationDate":"2024-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11191616/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141443541","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Periconceptional Non-medical Maternal Determinants Influence the Tryptophan Metabolism: The Rotterdam Periconceptional Cohort (Predict Study). 围孕期非医学因素对色氨酸代谢的影响:鹿特丹围孕期队列(预测研究)》。
IF 4.4
International Journal of Tryptophan Research Pub Date : 2024-06-12 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241257816
Sofie Km van Zundert, Lenie van Rossem, Mina Mirzaian, Pieter H Griffioen, Sten P Willemsen, Ron Hn van Schaik, Régine Pm Steegers-Theunissen
{"title":"Periconceptional Non-medical Maternal Determinants Influence the Tryptophan Metabolism: The Rotterdam Periconceptional Cohort (Predict Study).","authors":"Sofie Km van Zundert, Lenie van Rossem, Mina Mirzaian, Pieter H Griffioen, Sten P Willemsen, Ron Hn van Schaik, Régine Pm Steegers-Theunissen","doi":"10.1177/11786469241257816","DOIUrl":"10.1177/11786469241257816","url":null,"abstract":"<p><strong>Background: </strong>The vital role of the maternal tryptophan (TRP) metabolism in maternal health and pregnancy is well established. However, non-medical maternal determinants influencing the TRP metabolism have been poorly investigated. We hypothesise that periconceptional maternal non-medical determinants alter the TRP metabolism, affecting both kynurenine (KP) and serotonin pathway (SP) metabolite concentrations. Therefore, we investigated the influence of non-medical maternal determinants on the TRP metabolism during the periconception period.</p><p><strong>Methods: </strong>About 1916 pregnancies were included from the Rotterdam Periconceptional Cohort between November 2010 and December 2020. Data on periconceptional non-medical maternal determinants were collected through questionnaires. Serum samples were collected at 8.5 (SD = 1.6) weeks of gestation and TRP, kynurenine (KYN), 5-hydroxytryptophan (5-HTP), 5-HT (5-hydroxytryptamine) and 5-hydroxyindole acetic acid (5-HIAA) were determined using validated liquid chromatography (tandem) mass spectrometry. Mixed models were used to determine associations between periconceptional non-medical maternal determinants and these metabolites.</p><p><strong>Results: </strong>In total 11 periconceptional non-medical maternal determinants were identified. Protein intake was positively associated with TRP (<i>β</i> = .12, 95% CI = 0.07-0.17), while age, energy intake and body mass index (BMI) (<i>β</i> = -.24, 95% CI = -0.37 to -0.10) were negatively associated with TRP. Age, BMI and total homocysteine were associated with higher KYN, whereas non-western geographical origin was associated with lower KYN (<i>β</i> = -.09, 95% CI = -0.16 to -0.03). Protein intake and total homocysteine (<i>β</i> = .07, 95% CI = 0.03-0.11) had a positive association with 5-HTP, while a negative association was found for energy intake. A non-western geographical origin and drug use were associated with higher 5-HT, and BMI with lower 5-HT (<i>β</i> = -6.32, 95% CI = -10.26 to -2.38). Age was positively associated with 5-HIAA (<i>β</i> = .92, 95% CI = 0.29-1.56), and BMI negatively.</p><p><strong>Conclusions: </strong>Periconceptional non-medical maternal determinants, including age, geographical origin, drug use, energy and protein intake, BMI and total homocysteine, influence KP and SP metabolite concentrations.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241257816"},"PeriodicalIF":4.4,"publicationDate":"2024-06-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11171438/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"141318495","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
The Role of Aryl Hydrocarbon Receptor in Bone Biology. 芳基烃受体在骨生物学中的作用
IF 4.4
International Journal of Tryptophan Research Pub Date : 2024-05-15 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241246674
Sagar Vyavahare, Pankaj Ahluwalia, Sonu Kumar Gupta, Ravindra Kolhe, William D Hill, Mark Hamrick, Carlos M Isales, Sadanand Fulzele
{"title":"The Role of Aryl Hydrocarbon Receptor in Bone Biology.","authors":"Sagar Vyavahare, Pankaj Ahluwalia, Sonu Kumar Gupta, Ravindra Kolhe, William D Hill, Mark Hamrick, Carlos M Isales, Sadanand Fulzele","doi":"10.1177/11786469241246674","DOIUrl":"https://doi.org/10.1177/11786469241246674","url":null,"abstract":"<p><p>Aryl hydrocarbon receptor (AhR), a ligand-activated transcription factor, is crucial in maintaining the skeletal system. Our study focuses on encapsulating the role of AhR in bone biology and identifying novel signaling pathways in musculoskeletal pathologies using the GEO dataset. The GEO2R analysis identified 8 genes (CYP1C1, SULT6B1, CYB5A, EDN1, CXCR4B, CTGFA, TIPARP, and CXXC5A) involved in the AhR pathway, which play a pivotal role in bone remodeling. The AhR knockout in hematopoietic stem cells showed alteration in several novel bone-related transcriptomes (eg, Defb14, ZNF 51, and Chrm5). Gene Ontology Enrichment Analysis demonstrated 54 different biological processes associated with bone homeostasis. Mainly, these processes include bone morphogenesis, bone development, bone trabeculae formation, bone resorption, bone maturation, bone mineralization, and bone marrow development. Employing Functional Annotation and Clustering through DAVID, we further uncovered the involvement of the xenobiotic metabolic process, p450 pathway, oxidation-reduction, and nitric oxide biosynthesis process in the AhR signaling pathway. The conflicting evidence of current research of AhR signaling on bone (positive and negative effects) homeostasis may be due to variations in ligand binding affinity, binding sites, half-life, chemical structure, and other unknown factors. In summary, our study provides a comprehensive understanding of the underlying mechanisms of the AhR pathway in bone biology.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241246674"},"PeriodicalIF":4.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097734/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959972","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease. 色氨酸和犬尿氨酸途径作为健康和疾病中干细胞龛位调节器的证据综述。
IF 4.4
International Journal of Tryptophan Research Pub Date : 2024-05-15 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241248287
Benjamin Sebastian Summers, Sarah Thomas Broome, Tsz Wai Rosita Pang, Hamish D Mundell, Naomi Koh Belic, Nicole C Tom, Mei Li Ng, Maylin Yap, Monokesh K Sen, Sara Sedaghat, Michael W Weible, Alessandro Castorina, Chai K Lim, Michael D Lovelace, Bruce J Brew
{"title":"A Review of the Evidence for Tryptophan and the Kynurenine Pathway as a Regulator of Stem Cell Niches in Health and Disease.","authors":"Benjamin Sebastian Summers, Sarah Thomas Broome, Tsz Wai Rosita Pang, Hamish D Mundell, Naomi Koh Belic, Nicole C Tom, Mei Li Ng, Maylin Yap, Monokesh K Sen, Sara Sedaghat, Michael W Weible, Alessandro Castorina, Chai K Lim, Michael D Lovelace, Bruce J Brew","doi":"10.1177/11786469241248287","DOIUrl":"https://doi.org/10.1177/11786469241248287","url":null,"abstract":"<p><p>Stem cells are ubiquitously found in various tissues and organs in the body, and underpin the body's ability to repair itself following injury or disease initiation, though repair can sometimes be compromised. Understanding how stem cells are produced, and functional signaling systems between different niches is critical to understanding the potential use of stem cells in regenerative medicine. In this context, this review considers kynurenine pathway (KP) metabolism in multipotent adult progenitor cells, embryonic, haematopoietic, neural, cancer, cardiac and induced pluripotent stem cells, endothelial progenitor cells, and mesenchymal stromal cells. The KP is the major enzymatic pathway for sequentially catabolising the essential amino acid tryptophan (TRP), resulting in key metabolites including kynurenine, kynurenic acid, and quinolinic acid (QUIN). QUIN metabolism transitions into the adjoining de novo pathway for nicotinamide adenine dinucleotide (NAD) production, a critical cofactor in many fundamental cellular biochemical pathways. How stem cells uptake and utilise TRP varies between different species and stem cell types, because of their expression of transporters and responses to inflammatory cytokines. Several KP metabolites are physiologically active, with either beneficial or detrimental outcomes, and evidence of this is presented relating to several stem cell types, which is important as they may exert a significant impact on surrounding differentiated cells, particularly if they metabolise or secrete metabolites differently. Interferon-gamma (IFN-γ) in mesenchymal stromal cells, for instance, highly upregulates rate-limiting enzyme indoleamine-2,3-dioxygenase (IDO-1), initiating TRP depletion and production of metabolites including kynurenine/kynurenic acid, known agonists of the Aryl hydrocarbon receptor (AhR) transcription factor. AhR transcriptionally regulates an immunosuppressive phenotype, making them attractive for regenerative therapy. We also draw attention to important gaps in knowledge for future studies, which will underpin future application for stem cell-based cellular therapies or optimising drugs which can modulate the KP in innate stem cell populations, for disease treatment.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241248287"},"PeriodicalIF":4.4,"publicationDate":"2024-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11097742/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140959948","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Kynurenine Metabolites in CSF and Plasma in Healthy Males. 健康男性脑脊液和血浆中的犬尿氨酸代谢物
IF 4.4
International Journal of Tryptophan Research Pub Date : 2024-04-24 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241245323
Funda Orhan, Lilly Schwieler, Göran Engberg, Martin Samuelsson
{"title":"Kynurenine Metabolites in CSF and Plasma in Healthy Males.","authors":"Funda Orhan, Lilly Schwieler, Göran Engberg, Martin Samuelsson","doi":"10.1177/11786469241245323","DOIUrl":"https://doi.org/10.1177/11786469241245323","url":null,"abstract":"<p><p>In recent years, kynurenine metabolites generated by tryptophan catabolism have gained increasing attention in the context of brain diseases. The question of importance is whether there is a relationship between peripheral and central levels of these metabolites. Some of these compounds do not cross the blood-brain barrier; in particular, kynurenic acid, and most analyses of kynurenines from psychiatric patients have been performed using plasma samples. In the present study, we recruited 30 healthy volunteers with no history of psychiatric or neurological diagnosis, to analyze tryptophan, kynurenine, kynurenic acid, and quinolinic acid levels in CSF and plasma. In addition, kynurenic acid was analyzed in urine. The most important finding of this study is that CSF kynurenic acid levels do not correlate with those in plasma or urine. However, we found a correlation between plasma kynurenine and CSF kynurenic acid. Further, plasma kynurenine and plasma quinolinic acid were correlated. Our findings clarify the distribution of tryptophan and its metabolites in various body compartments and may serve as a guide for the analysis of these metabolites in humans. The most significant finding of the present study is that a prediction of brain kynurenic acid by of the analysis of the compound in plasma cannot be made.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241245323"},"PeriodicalIF":4.4,"publicationDate":"2024-04-24","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11044574/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140853134","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Fetal Sex as Moderating Factor for the Relationship Between Maternal Childhood Trauma and Salivary Kynurenic Acid and Tryptophan in Pregnancy: A Pilot Study. 胎儿性别是母亲童年创伤与妊娠期唾液犬尿酸和色氨酸关系的调节因素:一项试点研究。
IF 4.4
International Journal of Tryptophan Research Pub Date : 2024-04-23 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241244603
Bruno Pedraz-Petrozzi, Eva Kathrin Lamadé, Marta Marszalek-Grabska, Alicja Trzpil, Ole Lindner, Pascal Meininger, Emilia Fornal, Waldemar A Turski, Stephanie H Witt, Maria Gilles, Michael Deuschle
{"title":"Fetal Sex as Moderating Factor for the Relationship Between Maternal Childhood Trauma and Salivary Kynurenic Acid and Tryptophan in Pregnancy: A Pilot Study.","authors":"Bruno Pedraz-Petrozzi, Eva Kathrin Lamadé, Marta Marszalek-Grabska, Alicja Trzpil, Ole Lindner, Pascal Meininger, Emilia Fornal, Waldemar A Turski, Stephanie H Witt, Maria Gilles, Michael Deuschle","doi":"10.1177/11786469241244603","DOIUrl":"https://doi.org/10.1177/11786469241244603","url":null,"abstract":"<p><p>Traumatic experiences and fetal development influence tryptophan (TRP) and its neuroactive byproduct, kynurenic acid (KYNA). Maternal TRP metabolite levels during pregnancy vary by fetal sex, with higher concentrations in mothers carrying male fetuses. This pilot study aimed to explore the relationship between offspring sex, maternal childhood trauma, and maternal salivary KYNA and TRP levels during pregnancy. Liquid chromatography-tandem mass spectrometry (LC-MS/MS) was used to determine KYNA and TRP levels in maternal saliva samples collected from 35 late-pregnancy participants. Maternal childhood trauma was assessed using the Childhood Trauma Questionnaire, including subscales for emotional abuse, physical abuse, sexual abuse, emotional neglect, and physical neglect. Among mothers pregnant with boys, salivary KYNA significantly correlated with physical and emotional neglect, and salivary TRP with emotional neglect. No significant correlations were found in mothers who delivered female offspring. Significant associations of childhood trauma and offspring sex were found for salivary KYNA but not TRP concentrations. Mothers with higher trauma levels who delivered boys exhibited higher levels of salivary KYNA compared to those with lower trauma levels. Moreover, mothers with higher trauma levels who delivered boys had higher salivary KYNA levels than those with higher trauma levels who delivered girls. This pilot study provides evidence of an association between maternal childhood trauma and TRP metabolism, measured in saliva, especially in mothers pregnant with boys. However, longitudinal studies with larger sample sizes are required to confirm these results.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241244603"},"PeriodicalIF":4.4,"publicationDate":"2024-04-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC11041113/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140860727","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
Anthranilic Acid, a GPR109A Agonist, and Schizophrenia. GPR109A激动剂茴香酸与精神分裂症
IF 4.4
International Journal of Tryptophan Research Pub Date : 2024-03-25 eCollection Date: 2024-01-01 DOI: 10.1177/11786469241239125
Gregory Oxenkrug, Brent Forester
{"title":"Anthranilic Acid, a GPR109A Agonist, and Schizophrenia.","authors":"Gregory Oxenkrug, Brent Forester","doi":"10.1177/11786469241239125","DOIUrl":"10.1177/11786469241239125","url":null,"abstract":"<p><strong>Introduction: </strong>Limited clinical efficiency of current medications warrants search for new antipsychotic agents. Deorphanized G-protein coupled receptor (GPR)109A has not attracted much of attention of schizophrenia researchers. We analyzed literature and our data on endogenous agonists of GPR109A, beta-hydroxybutyrate (BHB), anthranilic (AA), butyric (BA), and nicotinic (NA) acids, in individuals with schizophrenia.</p><p><strong>Data: </strong>Sex specific differences: plasma AA levels were 27% higher in female than in male patients and correlated with PANSS before 6 weeks of antipsychotics treatment (<i>r</i> = .625, <i>P</i> < .019, Spearman's test). There was no sex specific differences of plasma AA levels after treatment. AA plasma levels inversely correlated (-.58, <i>P</i> < .005) with PANSS scores in responders to treatment (at least, 50% improvement) but not in nonresponders. Preclinical studies suggested antipsychotic effect of BHB and BA. Clinical studies observed antipsychotic effect of NA; benzoate sodium, an AA precursor; and interventions associated with BHB upregulation (eg, fasting and ketogenic diets).</p><p><strong>Discussion: </strong>Upregulation of GPR109A, an anti-inflammatory and neuroprotective receptor, inhibits cytosolic phospholipase A2 (cPLA2), an enzyme that breakdown myelin, lipid-based insulating axonal sheath that protects and promotes nerve conduction. Brain cPLA2 is upregulated in individuals with schizophrenia and subjects at high-risk for development of psychosis. Lower myelin content is associated with cognitive decline in individuals with schizophrenia. Therefore, GPR109A might exert antipsychotic effect via suppression of cPLA2, and, consequently, preservation of myelin integrity. Future research might explore antipsychotic effects of (1) human pegylated kynureninase, an enzyme that catalyzes formation of AA from kynurenine (Kyn); (2) inhibitors of Kyn conversion into kynurenic acid, for example, KYN5356, to patients with already impaired Kyn conversion into 3-hydroxykynurenine; (3) synthetic GPR 109A agonists, for example, MK-1903 and SCH900271 and GSK256073, that underwent clinical trials as anti-dyslipidemia agents. GPR109A expression, that might be a new endophenotype of schizophrenia, especially associated with cognitive impairment, needs thorough assessment.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"17 ","pages":"11786469241239125"},"PeriodicalIF":4.4,"publicationDate":"2024-03-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10964450/pdf/","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"140294920","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"OA","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
引用次数: 0
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
相关产品
×
本文献相关产品
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信