Activation of the IDO1-GCN2-ATF4-CHOP Pathway During the Massive Generation of Antibody-Secreting Cells in Dengue Patients Through Single-Cell Transcriptomics.
Jéssica C Nascimento, André N A Gonçalves, Karen T Akashi, Helder I Nakaya, Eduardo L V Silveira
{"title":"Activation of the IDO1-GCN2-ATF4-CHOP Pathway During the Massive Generation of Antibody-Secreting Cells in Dengue Patients Through Single-Cell Transcriptomics.","authors":"Jéssica C Nascimento, André N A Gonçalves, Karen T Akashi, Helder I Nakaya, Eduardo L V Silveira","doi":"10.1177/11786469251340237","DOIUrl":null,"url":null,"abstract":"<p><p>Dengue, a widespread mosquito-borne disease, annually afflicts millions globally, posing substantial mortality risks. Preceding disease defervescence, a marked and transient surge in antibody-secreting cell (ASC) frequency correlates with disease severity, paralleled by heightened tryptophan degradation. Investigating details of this process through single-cell transcriptomics from public repositories, our data pinpoint CD14+ monocytes as principal IDO1 and IDO2 expressors, implicating them, rather than B cells, in initiating tryptophan metabolism. Interestingly, naive B cells exhibit altered gene expression indicative of early impact by tryptophan deficiency before defervescence with a potential impact on the B cell fate. Dengue-induced ASCs upregulated GCN2, PERK, eIF2a, ATF4 genes as well as BIM and CASP-3. However, the high expression of anti-apoptotic genes (FKBP8 [a CHOP-regulated gene], BCL-XL, BCL-2, MCL-1) allows enhanced ASC survival. Proliferation and differentiation-related genes (eIF4EBP1, RRM2, and HIF1a) were also upregulated in ASCs. These findings untangle how Dengue modulates the host metabolism and B-cell responses, although further research is needed to fully understand their implications on disease progression.</p>","PeriodicalId":46603,"journal":{"name":"International Journal of Tryptophan Research","volume":"18 ","pages":"11786469251340237"},"PeriodicalIF":2.7000,"publicationDate":"2025-06-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.ncbi.nlm.nih.gov/pmc/articles/PMC12198583/pdf/","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Tryptophan Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/11786469251340237","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"2025/1/1 0:00:00","PubModel":"eCollection","JCR":"Q3","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
Abstract
Dengue, a widespread mosquito-borne disease, annually afflicts millions globally, posing substantial mortality risks. Preceding disease defervescence, a marked and transient surge in antibody-secreting cell (ASC) frequency correlates with disease severity, paralleled by heightened tryptophan degradation. Investigating details of this process through single-cell transcriptomics from public repositories, our data pinpoint CD14+ monocytes as principal IDO1 and IDO2 expressors, implicating them, rather than B cells, in initiating tryptophan metabolism. Interestingly, naive B cells exhibit altered gene expression indicative of early impact by tryptophan deficiency before defervescence with a potential impact on the B cell fate. Dengue-induced ASCs upregulated GCN2, PERK, eIF2a, ATF4 genes as well as BIM and CASP-3. However, the high expression of anti-apoptotic genes (FKBP8 [a CHOP-regulated gene], BCL-XL, BCL-2, MCL-1) allows enhanced ASC survival. Proliferation and differentiation-related genes (eIF4EBP1, RRM2, and HIF1a) were also upregulated in ASCs. These findings untangle how Dengue modulates the host metabolism and B-cell responses, although further research is needed to fully understand their implications on disease progression.