{"title":"Vibration Response of the Crawler Combine Chassis Frame Excited by the Engine","authors":"Taibai Xu, Dongju Gao, Yi Chen, Weiwei Zhang, Fei Xu, Peng Zhou","doi":"10.1155/2021/6675003","DOIUrl":"https://doi.org/10.1155/2021/6675003","url":null,"abstract":"There are many problems of vibration and noise in combine working. As the main power source and excitation source of a combine, the working state of an engine directly affects the reliability and stability of the whole harvester. In order to analyze the vibration response characteristics of a chassis frame under engine excitation, the vibration mechanism and theoretical excitation characteristics of an engine vibration source on a crawler combine harvester are analyzed in this paper, and the vibration response of chassis under engine excitation is tested and analyzed. After theoretical derivation, a two-degree-of-freedom dynamic model of an engine and chassis is established. The experimental results show that the up and down vibration generated by the engine is the main vibration source in the direction, and the main excitation frequency is the second-order firing frequency. This paper provides a theoretical reference and experimental basis for vibration reduction and noise reduction of combine and vibration characteristics of the chassis frame.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2021 1","pages":"1-12"},"PeriodicalIF":0.9,"publicationDate":"2021-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"44756125","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Film Cooling Effectiveness of Three-Hole-Branch Circular Holes","authors":"Fan Yang, M. Taslim","doi":"10.1155/2021/6691128","DOIUrl":"https://doi.org/10.1155/2021/6691128","url":null,"abstract":"A three-hole-branch geometry for film cooling is proposed. Each branch is made up of a streamwise 30°-angled circular hole with a circular hole of the same diameter on each side of it. These three holes share the same inlet area on the coolant supply side. Three side hole inclination angles of 30°, 37.5°, and 45° and three branch angles (the angle between the main and side holes) generated nine configurations that were tested for four blowing ratios of 0.5, 1, 1.5, and 2. To their benefits, these straight-through circular holes could easily be laser drilled on the airfoils or other gas turbine hot section surfaces. For comparative evaluation of these film hole geometries, the commonly used 7°-7°-7° diffusion hole geometry with the same inlet hole diameter was tested as a baseline under otherwise identical conditions. The pressure-sensitive paint (PSP) technique was utilized to test these geometries for their film cooling effectiveness. Depending on the branch geometry, for the same amount of coolant, some configurations were found to be superior to the baseline case for stream- or spanwise film cooling distributions while for the steeper side hole angles, these branched holes did not perform as well as the baseline case. The main conclusion is that the three holes with the same inclination angle of 30° exhibited the best film cooling effectiveness performance including the baseline geometry.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64763605","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Experimental Investigations on Leakages in Positive Displacement Machines","authors":"H. H. Patel, V. Lakhera","doi":"10.1155/2021/6684329","DOIUrl":"https://doi.org/10.1155/2021/6684329","url":null,"abstract":"The clearance gaps in positive displacement machines such as compressors, pumps, expanders, and turbines are critical for their performance and reliability. The leakage flow through these clearances influences the volumetric and adiabatic efficiencies of the machines. The extent of the leakage flow depends on the size and shape of clearance paths and pressure differences across these paths. Usually, the mass flow through the gaps is estimated using the isentropic nozzle equation with the flow coefficients applied to correct for the real flow conditions. However, the flow coefficients applied generally do not take into account the shape and size of these leakage paths. For that reason, a proper understanding of the relationship between flow coefficients and shape parameters is crucial for an accurate prediction of leakage flows. The present study investigates the influence of the various dimensionless parameters such as Reynolds number, Mach number, and pressure ratio on the flow coefficients for circular and rectangular clearance shapes. The flow coefficients are determined by comparing the experimental values obtained in an experimental test rig and the flow rates obtained from the isentropic nozzle equation. It is observed that in the case of circular clearances, the mean deviation of the experimental leakage results (in comparison to the analytical results using isotropic nozzle equations) is +9.1%, which is significantly lower than the mean deviation (+20.5%) in the case of rectangular clearance leakages. The study indicates that the isentropic nozzle equation method is more suitable for predicting the leakages through the circular clearances and needs modifications for consideration of the rectangular clearances. Using regression analysis, empirical correlations are developed to predict the flow coefficient in terms of Reynolds number, Mach number, pressure ratio, aspect ratio, and β ratio, which are found to match within ±6.4 percent of the numerical results for the rectangular clearance and within the range of -3.6 percent to +5.1 percent of the numerical result for the circular clearance. The empirical relationships presented in this study can be extended to evaluate the flow coefficients in a positive displacement machine.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2021-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"64763976","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Influences of Hydrodynamic Forces on the Identification of the Rotor-Stator-Rubbing Fault in a Rotating Machinery","authors":"B. X. Tchomeni, D. F. Sozinando, A. Alugongo","doi":"10.1155/2020/8816191","DOIUrl":"https://doi.org/10.1155/2020/8816191","url":null,"abstract":"Mechanical failures of a complex machine such as rotor widely used in severe conditions often require specialized knowledge, technical expertise, and imagination to prevent its rupture. In this paper, a model for analyzing excitation of a coupled lateral-torsional vibrations of a shaft system in an inviscid fluid is proposed. The model considers the recurrent contact of the vibrating shaft to a fixed stator. The simplified mathematical model of the rotor-stator system is established based on the energy principle. The dynamic characteristics of the fluid-rotor system are studied, and the features of rub-impact are extracted numerically and validated experimentally under the effects of the unbalance and the hydrodynamic forces. The main contribution of this article is in extraction and identification of the rub features in an inviscid medium which proved to be complex by the obstruction of the fluid and required the use of appropriate signal processing tools. The results through a synchrosqueezing wavelet transform indicated that the exciting fluid force could significantly attenuate the instability and amplitude of rubbing rotor. The experimental results demonstrated that for half the first critical speed, the subharmonic \u0000 \u0000 1\u0000 /\u0000 2\u0000 ×\u0000 Ω\u0000 \u0000 and the irregular orbit patterns provide good indices for rub detection in an inviscid fluid of the rotating shafts. Finally, it is revealed that the instantaneous frequency extraction based on wavelet synchrosqueezing is a useful tool to identify the weak and hidden peak harmonics localised in the time-frequency maps of the fluid-rotor system.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-12-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48924212","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Research on Feature Extraction of Performance Degradation for Flexible Material R2R Processing Roller Based on PCA","authors":"Yaohua Deng, Huiqiao Zhou, Kexing Yao, Zhiqi Huang, Chengwang Guo","doi":"10.1155/2020/8812660","DOIUrl":"https://doi.org/10.1155/2020/8812660","url":null,"abstract":"Performance feature extraction is the primary problem in equipment performance degradation assessment. To handle the problem of high-dimensional performance characterization and complexity of calculating the performance indicators in flexible material roll-to-roll processing, this paper proposes a PCA method for extracting the degradation characteristic of roll shaft. Based on the analysis of the performance influencing factors of flexible material roll-to-roll processing roller, a principal component analysis extraction model was constructed. The original feature parameter matrix composed of 10-dimensional feature parameters such as time domain, frequency domain, and time-frequency domain vibration signal of the roll shaft was established; then, we obtained a new feature parameter matrix by normalizing the original feature parameter matrix. The correlation measure between every two parameters in the matrix was used as the eigenvalue to establish the covariance matrix of the performance degradation feature parameters. The Jacobi iteration method was introduced to derive the algorithm for solving eigenvalue and eigenvector of the covariance matrix. Finally, using the eigenvalue cumulative contribution rate as the screening rule, we linearly weighted and fused the eigenvectors and derived the feature principal component matrix of the processing roller vibration signal. Experiments showed that the initially obtained, 10-dimensional features of the processing rollers’ vibration signals, such as average, root mean square, kurtosis index, centroid frequency, root mean square of frequency, standard deviation of frequency, and energy of the intrinsic mode function component, can be expressed by 3-dimensional principal components , and . The vibration signal features reduction dimension was realized, and , and contain 98.9% of the original vibration signal data, further illustrating that the method has high precision in feature parameters’ extraction and the advantage of eliminating the correlation between feature parameters and reducing the workload selecting feature parameters.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2020 1","pages":"1-23"},"PeriodicalIF":0.9,"publicationDate":"2020-12-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48852019","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Utilization of Open-Source OpenFOAM Code to Examine the Hydrodynamic Characteristics of a Linear Jet Propulsion System with or without Stator in Bollard Pull Condition","authors":"P. Ghadimi, Negin Donyavizadeh, P. Taghikhani","doi":"10.1155/2020/8867416","DOIUrl":"https://doi.org/10.1155/2020/8867416","url":null,"abstract":"With the development of high-speed crafts, new propulsion systems are introduced into the marine industry. One of the new propulsion systems is linear jet which is similar to pump jet and has a rotor, a stator, and a duct. The main difference between this system and pump jet is the placement of linear jet system under the hull body and inside a tunnel. Since this system, like a water jet, is inside the tunnel, the design idea of this system is a combination of a water jet and pump jet. In this paper, hydrodynamic performance of linear jet propulsion system is numerically investigated. To this end, the OpenFOAM software is utilized and RANS steady equations are solved using a - turbulent model. The linear jet geometry is produced by assembling a Kaplan rotor, stator with a NACA 5505 cross section, and a decelerating duct. The results of numerical solution in the form of thrust, torque coefficient, and efficiency are compared with available experimental data for a ducted propeller, and good agreement is displayed. Subsequently, the hydrodynamic parameters are computed in two conditions: with a stator and without a stator. By comparing the results, it is observed that the total thrust coefficient of the propulsion system with a stator at all advance ratios increases by at least 40%. It is further observed that addition of a stator also improves its efficiency.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2020 1","pages":"1-11"},"PeriodicalIF":0.9,"publicationDate":"2020-12-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8867416","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"42970802","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"High-Precision Extraction Method for Blade Tip-Timing Signal with Eddy Current Sensor","authors":"Ji-wang Zhang, K. Ding, Guang Chen","doi":"10.1155/2020/8882858","DOIUrl":"https://doi.org/10.1155/2020/8882858","url":null,"abstract":"Online monitoring of high-speed rotating blades has always been a hot topic. Of the various methods, the blade tip timing (BTT) technique, based on eddy current sensors, is considered to be the most promising. However, BTT signals are easily influenced by various factors, which means that the accurate extraction of BTT signals remains a challenge. To try to solve this problem, the causes of measurement error were analyzed. The three main reasons for the error were established: the variation in blade tip clearance, the interference of background noise, and the asymmetry of the blade tip shape. Further, pertinent improvement methods were proposed, and a compensation method was proposed for the errors caused by the variation of tip clearance. A new denoising and shaping algorithm based on ensemble empirical mode decomposition (EEMD) was introduced for the errors caused by background noise. Additionally, an optimal installation position of the sensor was also proposed for the errors caused by the asymmetry of the blade tip shape. Finally, simulations and experiments were used to demonstrate the improved methodology. The results show that the measurement error on vibration amplitude and vibration frequency using the proposed method is less than 2.89% and 0.17%, respectively, which is much lower than the traditional method (24.44% and 0.39%, respectively).","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":" ","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8882858","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"46839583","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
{"title":"Wind Tunnel Test of the Icing Characteristics of Airfoil Rotating around a Vertical Axis","authors":"Yan Li, Lei Shi, Wenfeng Guo, Ce Sun, Yu Jiang","doi":"10.1155/2020/8841076","DOIUrl":"https://doi.org/10.1155/2020/8841076","url":null,"abstract":"To determine the process of icing on the rotating machinery, an icing experiment on a rotating airfoil blade was carried out in this paper. First, an icing wind tunnel was fabricated, and its conditional parameters were calibrated. The calibration results showed that the performance of this icing wind tunnel was reliable and stable. The experimental temperature was -15°C, and the MVD was 50 μm. Then, an icing experiment on the rotating blade with the NACA0018 airfoil was carried out. The characteristics of icing, including icing distribution, growth rate of icing, and thickness of the ice layer, were defined and quantitatively analyzed under different tip speed ratios and setting angles. The results show that the type of icing changes from rime ice to glaze ice with an increase in the tip speed ratio. The dimensionless icing area and dimensionless thickness of the ice layer both increase with an increase in the icing time. The growth rate of icing increases rapidly at the initial icing stage and then decreases dramatically under each tip speed ratio condition.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"1 1","pages":""},"PeriodicalIF":0.9,"publicationDate":"2020-11-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8841076","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"41314043","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Chun Lv, Peilin Zhang, Dinghai Wu, Bing Li, Yunqiang Zhang
{"title":"Bearing Fault Signal Analysis Based on an Adaptive Multiscale Combined Morphological Filter","authors":"Chun Lv, Peilin Zhang, Dinghai Wu, Bing Li, Yunqiang Zhang","doi":"10.1155/2020/7567439","DOIUrl":"https://doi.org/10.1155/2020/7567439","url":null,"abstract":"Bearing fault signal analysis is an important means of bearing fault diagnosis. To effectively eliminate noise in a fault signal, an adaptive multiscale combined morphological filter is proposed based on the theory of mathematical morphology. Both simulation and experimental results show that the adaptive multiscale combined morphological filter can remove noise more thoroughly and retain details of the fault signal better than the dual-tree complex wavelet filter, traditional morphological filter, adaptive singular value decomposition method (ASVD), and improved switching Kalman filter (ISKF). The adaptive multiscale combined morphological filter considers both positive and negative impulses in the signal; therefore, it has strong adaptability to complex noise in the environment, making it an effective new method for bearing fault diagnosis.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2020 1","pages":"1-8"},"PeriodicalIF":0.9,"publicationDate":"2020-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/7567439","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"43091093","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}
Bin Qu, Zhou Sun, F. Feng, Yan Li, Guoqiang Tong, R. S. Noor
{"title":"Preparation and Anti-Icing of Hydrophobic Polypyrrole Coatings on Wind Turbine Blade","authors":"Bin Qu, Zhou Sun, F. Feng, Yan Li, Guoqiang Tong, R. S. Noor","doi":"10.1155/2020/8626457","DOIUrl":"https://doi.org/10.1155/2020/8626457","url":null,"abstract":"This paper describes the method of preparing strong hydrophobic polypyrrole (PPy) on wind turbine blades. The water contact angle of strong hydrophobic PPy coatings was 127.2°. The strong hydrophobic PPy coatings exhibited excellent anti-icing properties. The maximum icing weight of strong hydrophobic PPy coating blade was almost 0.10 g while the maximum icing weight of no coating blade was found to be 26.13 g. The maximum icing thickness of a strong hydrophobic PPy coating blade was only 1.08 mm. The current research will provide a better technique to create anti-icing coatings on wind turbine blades and other outdoor equipment.","PeriodicalId":46335,"journal":{"name":"International Journal of Rotating Machinery","volume":"2020 1","pages":"1-9"},"PeriodicalIF":0.9,"publicationDate":"2020-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://sci-hub-pdf.com/10.1155/2020/8626457","citationCount":null,"resultStr":null,"platform":"Semanticscholar","paperid":"48090657","PeriodicalName":null,"FirstCategoryId":null,"ListUrlMain":null,"RegionNum":0,"RegionCategory":"","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":"","EPubDate":null,"PubModel":null,"JCR":null,"JCRName":null,"Score":null,"Total":0}